Publications

Publications:

[1]

Nancy Aggarwal et al. Characterization of magnetic field noise in the ARIADNE source mass rotor. 2020. arXiv: 2011 . 12617 [physics.ins-det].

[2]

F. M. Gonzalez et al. “Improved Neutron Lifetime Measurement with UCNτ”. Phys. Rev. Lett. 127 (16 Oct. 2021), p. 162501. doi: 10.1103/PhysRevLett. 127.162501.

[3]

Yun Chang Shin et al. “Compact ultracold neutron source concept for low-energy accelerator-driven neutron sources”. The European Physical Journal Plus 136.8 (Aug. 2021), p. 882. doi: 10.1140/epjp/ s13360-021-01740-1.

[4]

Stefan Döge et al. “Incoherent approximation for neutron up-scattering cross sections and its corrections for slow neutrons and low crystal temperatures”. Phys. Rev. C 103 (5 May 2021), p. 054606. doi: 10.1103/PhysRevC.103.054606.

[5]

K. Kuk et al. “Projection imaging with ultracold neutrons”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1003 (2021), p. 165306. doi: 10.1016/j.nima.2021.165306.

[6]

Z. Tang et al. “Ultracold neutron properties of the Eljen-299-02D deuterated scintillator”. Review of Scientific Instruments 92.2 (2021), p. 023305. doi: 10.1063/5.0030972.

[7]

X. Sun et al. “Improved limits on Fierz interference using asymmetry measurements from the Ultracold Neutron Asymmetry (UCNA) experiment”. Phys. Rev. C 101 (3 Mar. 2020), p. 035503. doi: 10. 1103/PhysRevC.101.035503.

[8]

M.W. Ahmed et al. “A new cryogenic apparatus to search for the neutron electric dipole moment”. Journal of Instrumentation 14.11 (Nov. 2019), P11017–P11017. doi: 10.1088/1748-0221/14/11/ p11017.

[9]

Leung, K.K.H. et al. “The neutron electric dipole moment experiment at the Spallation Neutron Source”. EPJ Web Conf. 219 (2019), p. 02005. doi: 10.1051/epjconf/201921902005.

[10]

Nathan Callahan et al. “Monte Carlo simulations of trapped ultracold neutrons in the UCNτ experiment”. Phys. Rev. C 100 (1 July 2019), p. 015501. doi: 10. 1103/PhysRevC.100.015501.

[11]

Z. Tang et al. “Search for the Neutron Decay n X + γ, Where X is a Dark Matter Particle”. Phys. Rev. Lett. 121 (2 July 2018), p. 022505. doi: 10.1103/PhysRevLett.121.022505.

[12]

X. Sun et al. “Search for dark matter decay of the free neutron from the UCNA experiment: n χ + e+e”. Phys. Rev. C 97 (5 May 2018), p. 052501. doi: 10.1103/PhysRevC. 97.052501.

[13]

R. W. Pattie Jr. et al. “Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection”. Science 360.6389 (2018), pp. 627–632. doi: 10.1126/science.aan8895.

[14]

M. A.-P. Brown et al. “New result for the neutron β-asymmetry parameter A0 from UCNA”. Phys. Rev. C 97 (3 Mar. 2018), p. 035505. doi: 10. 1103/PhysRevC.97.035505.

[15]

T. M. Ito et al. “Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment”. Phys. Rev. C 97 (1 Jan. 2018), p. 012501. doi: 10.1103/PhysRevC.97.012501.

[16]

K. P. Hickerson et al. “First direct constraints on Fierz interference in free-neutron β decay”. Phys. Rev. C 96 (4 Oct. 2017), p. 042501. doi: 10.1103/ PhysRevC.96.042501.

[17]

C. L. Morris et al. “A new method for measuring the neutron lifetime using an in situ neutron detector”. Review of Scientific Instruments 88.5 (2017), p. 053508. doi: 10.1063/1.4983578.

[18]

R.W. Pattie et al. “Evaluation of commercial nickel–phosphorus coating for ultracold neutron guides using a pinhole bottling method”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 872 (2017), pp. 64–73. doi: 10.1016/j.nima.2017.07.051.

[19]

L.J. Broussard et al. “Detection system for neutron β decay correlations in the UCNB and Nab experiments”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 849 (2017), pp. 83–93. doi: 10. 1016/j.nima.2016.12.030.

[20]

S. J. Seestrom et al. “Total cross sections for ultracold neutrons scattered from gases”. Phys. Rev. C 95 (1 Jan. 2017), p. 015501. doi: 10.1103/PhysRevC.95.015501.

[21]

D.G. Phillips et al. “Neutron-antineutron oscillations: Theoretical status and experimental prospects”. Physics Reports 612 (2016). Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects, pp. 1–45. doi: 10.1016/j.physrep.2015. 11.001.

[22]

S. J. Seestrom et al. “Upscattering of ultracold neutrons from gases”. Phys. Rev. C 92 (6 Dec. 2015), p. 065501. doi: 10.1103/PhysRevC. 92.065501.

[23]

Zhehui Wang et al. “A multilayer surface detector for ultracold neutrons”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 798 (2015), pp. 30–35. doi: 10.1016/j.nima.2015.07. 010.

[24]

P.-H. Chu et al. “Search for exotic short-range interactions using paramagnetic insulators”. Phys. Rev. D 91 (10 May 2015), p. 102006. doi: 10.1103/PhysRevD.91.102006.

[25]

Y. J. Kim et al. “New experimental limit on the electric dipole moment of the electron in a paramagnetic insulator”. Phys. Rev. D 91 (10 May 2015), p. 102004. doi: 10.1103/PhysRevD.91.102004.

[26]

J. David Bowman et al. Determination of the Free Neutron Lifetime. 2014. arXiv: 1410.5311 [nucl-ex].

[27]

A R Young et al. “Beta decay measurements with ultracold neutrons: a review of recent measurements and the research program at Los Alamos National Laboratory”. Journal of Physics G: Nuclear and Particle Physics 41.11 (Oct. 2014), p. 114007. doi: 10.1088/0954- 3899/41/11/114007.

[28]

D. J. Salvat et al. “Storage of ultracold neutrons in the magneto-gravitational trap of the UCNτ experiment”. Phys. Rev. C 89 (5 May 2014), p. 052501. doi: 10.1103/ PhysRevC.89.052501.

[29]

C.-Y. Liu, D. Salvat, and E. Adamek. “Phase Space Evolution in Neutron Traps for Measurements of the Neutron Beta-Decay Lifetime”. Next Generation Experiments to Measure the Neutron Lifetime, pp. 37–57. doi: 10.1142/9789814571678_0005.

[30]

E. I. Sharapov et al. “Measurements of ultracold neutron upscattering and absorption in polyethylene and vanadium”. Phys. Rev. C 88 (3 Sept. 2013), p. 037601. doi: 10.1103/PhysRevC.88.037601.

[31]

C.M. Lavelle, C.-Y. Liu, and M.B. Stone. “Toward a new polyethylene scattering law determined using inelastic neutron scattering”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 711 (2013), pp. 166–179. doi: 10.1016/j.nima.2013.01.048.

[32]

D. J. Salvat et al. “Investigating solid α-15N2 as a new source of ultra-cold neutrons”. EPL (Europhysics Letters) 103.1 (July 2013), p. 12001. doi: 10.1209/0295-5075/103/12001.

[33]

E. I. Sharapov et al. “Upscattering of ultracold neutrons from the polymer [C6H12]n”. Phys. Rev. C 88 (6 Dec. 2013), p. 064605. doi: 10.1103/PhysRevC. 88.064605.

[34]

A. Saunders et al. “Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source”. Review of Scientific Instruments 84.1 (2013), p. 013304. doi: 10.1063/1.4770063.

[35]

M. P. Mendenhall et al. “Precision measurement of the neutron β-decay asymmetry”. Phys. Rev. C 87 (3 Mar. 2013), p. 032501. doi: 10.1103/ PhysRevC.87.032501.

[36]

D.J. Salvat et al. “A boron-coated ionization chamber for ultra-cold neutron detection”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 691 (2012), pp. 109–112. doi: 10.1016/j. nima.2012.06.041.

[37]

A. T. Holley et al. “A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment”. Review of Scientific Instruments 83.7 (2012), p. 073505. doi: 10.1063/1.4732822.

[38]

T. M. Ito et al. “Effect of an electric field on superfluid helium scintillation produced by α-particle sources”. Phys. Rev. A 85 (4 Apr. 2012), p. 042718. doi: 10.1103/ PhysRevA.85.042718.

[39]

Young Jin Kim et al. “A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment”. Review of Scientific Instruments 83.1 (2012), p. 013502. doi: 10.1063/1. 3676163.

[40]

J. L. Hewett et al. “Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.” (June 2012). doi: 10.2172/1042577.

[41]

F. Atchison et al. “Production of ultracold neutrons from cryogenic 2H2, O2 and C2H4 converters”. EPL (Europhysics Letters) 95.1 (June 2011), p. 12001. doi: 10.1209/0295-5075/95/12001.

[42]

Y J Kim et al. “Experimental search for the electron Electric Dipole Moment using solid state techniques”. Journal of Physics: Conference Series 312.10 (Sept. 2011), p. 102009. doi: 10.1088/1742-6596/312/ 10/102009.

[43]

J. Liu et al. “Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons”. Phys. Rev. Lett. 105 (18 Oct. 2010), p. 181803. doi: 10.1103/PhysRevLett.105.181803.

[44]

C. M. Lavelle et al. “Ultracold-neutron production in a pulsed-neutron beam line”. Phys. Rev. C 82 (1 July 2010), p. 015502. doi: 10.1103/ PhysRevC.82.015502.

[45]

Yunchang Shin et al. “Microscopic model for the neutron dynamic structure factor of solid methane in phase II”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620.2 (2010), pp. 382–390. doi: https://doi.org/10.1016/j.nima.2010.03.109.

[46]

R. W. Pattie et al. “First Measurement of the Neutron β Asymmetry with Ultracold Neutrons”. Phys. Rev. Lett. 102 (1 Jan. 2009), p. 012301. doi: 10.1103/PhysRevLett.102.012301.

[47]

F. Atchison et al. “Erratum: Cold Neutron Energy Dependent Production of Ultracold Neutrons in Solid Deuterium [Phys. Rev. Lett. 99, 262502 (2007)]”. Phys. Rev. Lett. 101 (18 Oct. 2008), p. 189902. doi: 10.1103/PhysRevLett.101.189902.

[48]

F. Atchison et al. “Cold Neutron Energy Dependent Production of Ultracold Neutrons in Solid Deuterium”. Phys. Rev. Lett. 99 (26 Dec. 2007), p. 262502. doi: 10.1103/PhysRevLett.99.262502.

[49]

A. Esler et al. “Dressed spin of 3He”. Phys. Rev. C 76 (5 Nov. 2007), p. 051302. doi: 10.1103/PhysRevC. 76.051302.

[50]

C-Y. Liu and A R Young. “Ultra-cold Neutron Production in Anti-ferromagnetic Oxygen Solid” (2004). eprint: https://arxiv.org/abs/nucl-th/0406004.

[51]

Roger E. Hill and C.-Y. Liu. “Temperature-dependent neutron scattering cross-sections for polyethylene”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 538.1 (2005), pp. 686–691. doi: 10.1016/j.nima.2004.08.125.

[52]

C.-Y. Liu and S. K. Lamoreaux. “A new search for a permanent dipole moment of the electron in a solid state system”. Modern Physics Letters A 19.13n16 (2004), pp. 1235–1238. doi: 10.1142/ S0217732304014628.

[53]

C.-Y. Liu et al. “A New Source of Ultracold Neutrons”. Celebrating 60 Years: Los Alamos National Laboratory, 1943-2003 28 (2003), p. 202.

[54]

A Saunders et al. “Demonstration of a solid deuterium source of ultra-cold neutrons”. Physics Letters B 593.1 (2004), pp. 55–60. doi: 10.1016/j.physletb.2004.04.048.

[55]

C.-Y. Liu et al. “An apparatus to control and monitor the para-D2 concentration in a solid deuterium, superthermal source of ultra-cold neutrons”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508.3 (2003), pp. 257–267. doi: 10.1016/S0168-9002(03) 01666-8.

[56]

C. L. Morris et al. “Measurements of Ultracold-Neutron Lifetimes in Solid Deuterium”. Phys. Rev. Lett. 89 (27 Dec. 2002), p. 272501. doi: 10.1103/PhysRevLett.89.272501.

[57]

Albert Young et al. “A measurement of the neutron beta-asymmetry using ultra-cold neutrons”. Fundamental Physics with Pulsed Neutron Beams, pp. 164–180. doi: 10.1142/9789812811189_0015.

[58]

K. Kirch et al. “Status of the new Los Alamos UCN source”. AIP Conference Proceedings 576.1 (2001), pp. 289–292. doi: 10.1063/1. 1395306.

[59]

Roger E Hill et al. “Performance of the prototype LANL solid deuterium ultra-cold neutron source”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 440.3 (2000), pp. 674–681. doi: 10.1016/S0168-9002(99)01060-8.

[60]

C.-Y. Liu, A. R. Young, and S. K. Lamoreaux. “Ultracold neutron upscattering rates in a molecular deuterium crystal”. Phys. Rev. B 62 (6 Aug. 2000), R3581–R3583. doi: 10.1103/PhysRevB.62.R3581.

 

Ph.D. Dissertations:

  1. Francisco Gonzalez, Ph.D. 2021 “Precision Measurement of the Neutron Lifetime with the UCNtau Experiment”, [ProQuest Dissertation & Theses Global, Order No. 28544476]. Indiana University; 2021.

  2. Nathan Callahan, Ph.D. 2018 “Measurement of the Neutron Beta Decay Lifetime Using Magnetically Trapped Ultracold Neutrons”, [ProQuest Dissertation & Theses Global, Order No. 10935522]. Indiana University; 2018.

  3. Even Adamek, Ph.D. 2017 “Measurement of the Neutron Beta Decay Lifetime Using Magnetically Trapped Ultracold Neutrons”, [ProQuest Dissertation & Theses Global, Order No. 10269872]. Indiana University; 2017.

  4. Daniel Salvat, Ph.D. 2015 “A Magneto-Gravitational Neutron Trap for the Measurement of the Neutron Lifetime”, [ProQuest Dissertation & Theses Global, Order No. 3689164]. Indiana University;[Order No. 3337262]. Indiana University; 2008. 2015.

  5. Maciej Karcz, Ph.D. 2014 “Electric Breakdown and Ionization Detection in Normal Liquid and Superfluid 4He for the SNS nEDM experiment”, [ProQuest Dissertation & Theses Global, Order No. 3634313]. Indiana University; 2014.

  6. Young Jin Kim, Ph.D. 2011 “An Experimental Search for the Electron Electric Dipole Moment in a Gadolinium Gallium Garnet Crystal”, [ProQuest Dissertation & Theses Global, Order No. 3488085]. Indiana University; 2011.

  7. Yunchang Shin, Ph.D. 2008 “Studies in Neutron Phase Space cooling for Cold and Ultra-Cold Neutron Sources”, [ProQuest Dissertation & Theses Global, Order No. 3337262]. Indiana University; 2008.