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Evan Robert Adamek

Measurement of the Neutron Beta Decay Lifetime Using Magnetically Trapped

Ultracold Neutrons

The neutron lifetime is an important parameter in the Standard Model of particle physics,

with influences on the electroweak interaction and on Big Bang nucleosynthesis.

Measurements of this quantity in cold beam experiments and in experiments using

ultracold neutrons (UCN) disagree; this discrepancy may indicate that these measurements

possess unaccounted-for systematic errors. The UCNτ experiment at Los Alamos Neutron

Science Center (LANSCe) utilizes an asymmetrical magneto-gravitational storage volume

with an in-situ vanadium detector. This setup is designed to either avoid or control many

of the weaknesses that reduce systematic precision in other UCN lifetime experiments.

Controlling for the many measurable errors requires detailed calculation and simulation,

aided, for example, by the Geant4 Monte Carlo particle transport toolkit, which has been

used to create a high fidelity model of the UCNτ experiment for modeling UCN transport,

storage, and detection. Through the course of running the experiment, improvements in

knowledge of particle measurement have led to improvements to the transport and to the

detectors used in various parts of the experiment. With the experimental setup optimized

to account for the subtleties of the measurement, the 2014-2015 beam period at LANSCe

generated 85 measurement runs from which we could calculate the storage lifetime. Careful

analysis of the effects of background on the vanadium detector assembly allowed for

elimination of undesired signal and allowed for the extraction of a preliminary value for the

neutron lifetime and the determination of areas to improve for the following run cycle.

Chen-Yu Liu, Ph.D.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

Ever since the discovery of the neutron, it has been suspected to have possible decay

channels into lighter elementary particles. The measurement of the free neutron mass at

Mn = 1.0090 amu [12] gave rise to the possibility of decay into a proton through emission

of an electron and antineutrino, which is referred to as beta decay:

n→ p+ e− + νe + 0.782MeV (1.1)

The mass values of the neutron mass has since been improved to 939.565379(21) MeV/c2

[17], and neutron decay has been directly observed in numerous experiments. Nuclear

reactors and modern accelerators have provided vastly improved neutron flux to facilitate

increasingly precise neutron experiments.
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Figure 1.1: Feynman diagram of the beta decay interaction.

1.2 Importance of the Neutron Lifetime

Within the Standard Model of particle physics, beta decay is mediated by the emission of a

charged W boson, which subsequently decays into the leptonic products (See Fig. 1.1). If

we write out the probability amplitude for this transition, we see that the matrix element

for this ineteraction is dominated by a vector minus axial vector (V-A) term:

M = [GV pγµn−GApγ5γµn] [eγµ(1 + γ5)ν] (1.2)

where p,n,e, and ν are the corresponding spinors for each particle and GA and GV are the

coupling constants for the axial vector and vector forces. The two coupling constants are

directly proportional to the Cabbibo-Kobayashi-Maskawa (CKM) matrix term Vud. We can

find the decay probability rate using Fermi’s golden rule:

dW = (2π)−5δ(Ee + Eν − (mn −mp))
1

2Ee

1

2Eν
d3ped

3pν |M |
2 , (1.3)

By integrating this over the antineutrino momentum and electron solid angle we can

2



determine the decay constant, incorporating vector and axial vector coupling constants GV

and GA:

dW

dEe
=
G2
V | < 1 > |2 +G2

A| < σ > |2

2π3
Ee|pe|((mp −mn)− Ee)2 (1.4)

=⇒ W =
1

τn
=

(G2
V + 3G2

A)

2π3
fR, (1.5)

where fR is the integral over the Fermi energy spectrum. The neutron lifetime is then the

inverse of Equation 1.5, and so this equation gives us a means by which to experimentally

determine the vector and axial vector coupling constants [18]. The fR factor is computed

based on the Coulomb spectrum, recoil order, and radiative corrections, and is found to be

2π3/fR = 4908.7(1.9)G2
F , where GF is the Fermi weak coupling constant

1.16637(1)× 10−5GeV −2 and the units are defined to yield 1/s when introduced into

Equation 1.5. [16]

The link between τn and Vud also serves as a means of testing the unitarity of the CKM

matrix. With greater precision on the values of the matrix elements, the unitarity

condition can provide a constraint on the existence of yet undiscovered amplitudes, beyond

V-A, coupled to quark states beyond the Standard Model.

The physical processes governed by GA and GV are not limited to neutron beta decay.

Notably, superallowed 0+ → 0+ nuclear beta decays provide an alternate measurement of

their values for various nuclei with low uncertainties arising from nuclear structure. While

this is reliable for determining the vector coupling constant, the axial vector current is not

conserved and the ratio GA/GV can be influenced by several strong interaction processes.

Combining GV from nuclear processes with measurements such as correlation coefficients in

3



neutron beta decay offers a competing method to experiments which measure the neutron

lifetime.

Other weak current interactions which these constants influence include the proton-neutron

oscillations in the early universe, proton-proton fusion in solar reactions, and

neutrino/antineutrino detection. The first of these is particularly interesting, as the

formation of nucleons during big bang nucleosynthesis (BBN) gives a prediction of light

nuclei abundances that tie into astrophysical observations. In the early universe (t<0.1s),

the universe consisted of a hot plasma of all standard model fundamental particles kept in

thermal equilibrium through exchange of force bosons. Once the quarks fused to form

protons and neutrons, they remained in equilibrium through the reactions:

n+ e+ ↔ p+ ν, p+ e− ↔ n+ ν (1.6)

The rates of these reactions are proportional to the strength of the charged weak

interaction discussed above. As the universe expanded and cooled, the reactions fell out of

equilibrium at a time tfreeze ≈ 1s and temperature Tfreeze ≈ 1MeV . At this freeze-out

time, the ratio of neutrons to protons is n/p = e−(mn−mp)/T ≈ 1/6. As the universe cooled

further, this ratio shrinks as the neutrons decayed until all free neutrons were gone either

through beta decay or through capture on protons to form deuterium and helium. Since

these final abundances, especially that of 4He are directly tied to the neutron lifetime and

the weak interaction, the experimentally measured value of τn is an important input to the

BBN model and in fact comprises the dominant uncertainty in the predicted primordial

helium abundances. [18]
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1.3 Ultracold Neutrons

During his work on neutrons, Enrico Fermi realized that cold neutrons interact with matter

in a way that could be described as an effective potential, known as the Fermi

psuedo-potential or simply as the Fermi potential VF , which would be positive for most

materials. These potentials typically are around VF ≈ 10−7eV , which is orders of

magnitude lower than the energy of thermal and even cold neutrons. Neutrons with

energies at or below this energy region are referred to as ultracold neutrons, or UCN, and

exhibit useful experimental properties as a result. We define the cutoff energy for UCN to

be 300neV, which corresponds to a neutron velocity of 7.6 m/s. UCN see the Earth’s

gravitational potential as Vg/h = mng = 102neV/m. In addition to influencing the

kinematics of UCN motion, this also gives an upper limit on vertical travel, as a 300 neV

UCN loses all its kinetic energy after rising a height of 2.94m.

The neutron is a spin-1/2 particle with a magnetic moment µn = −1.913µN

≈ −60.3neV/T . UCN traveling through a magnetic field gradient experience a force of

Fm = −∇Vm = ±|µ|∇|B(r)|, where we have simplified to the adiabatic case due to the low

neutron velocity. Notice that a magnetic gradient will provide a force on the UCN parallel

to the gradient. For a sufficiently high field, the UCN with spin states aligned with the

field will be repelled and those anti-aligned with the field will be attracted. We describe

the first category as “low-field seeking” and the second as “high-field seeking” neutrons. If

the UCN are incident on a sufficiently strong field gradient, then the low field seeking UCN

will interact with the field as an insurmountable barrier and be reflected, while the high

field seeking UCN will transmit through the medium, creating a highly spin-polarized

population of UCN. For a completely polarized population of low field seeking UCN, a

magnetic barrier can be used as a trapping volume.

5



When considering the interaction of the neutron with a collection of nuclei, such as when a

UCN encounters a material surface, it is helpful to treat the effective potential as the sum

of the potentials within the bulk:

V (r) =
2π~2

m

∑
i

aiδ(r− ri), (1.7)

where ri is the position of the ith nucleus and the sum is over all nuclei in the bulk. We

can solve the Schrödinger equation for the wavefunction under the approximation that the

wave incident on each nucleus is simply the wavefunction at that nucleus, and arrive at the

expression for the Fermi effective potential of the bulk:

VF =
2π~2

m
Na, (1.8)

where a is the scattering length and N is the number density in the material [14]. This is

extremely useful for describing the motion of UCN because any material surface can be

approximated as a step potential of height VF . A natural consequence of this is that any

UCN with energy below the Fermi potential are totally reflected from that surface, and as

such can be trapped in material bottles. This forms the basis for one class of neutron

lifetime experiments.

1.4 Current Status of the Field

Precision measurements of the neutron lifetime follow two main experimental strategies.

The first measurements employed beams of slow neutrons for their measurement. When a

beam with known density ρn is directed through a known volume V, the rate of neutron

6



decay can be described by the differential equation dN/dt = −ρnV/τn. The rate of decay is

determined through the detection of protons and/or electrons from decays occurring within

the decay volume. The leading beam experiment for measuring the neutron lifetime is the

NIST beam experiment, which utilizes a segmented Penning trap as the decay volume to

capture the decay protons and guide them to the detectors. The segmentation allows

differing numbers of electrodes to be activated as a means of altering the trap volume. The

most recent measurement by this experiment is τn = 887.7± 1.2stat ± 1.9systs, with the

leading systematic uncertainty coming from neutron flux measurements[10].

The other method of measuring the neutron lifetime utilizes the trappable nature of

ultracold neutrons. Since UCN can be confined by material, magnetic, and gravitational

interactions, it is possible to store them in a material bottle and measure the surviving

neutrons at successive points in time. A typical bottle experiment utilizes a two point

measurement in which two storage times are prescribed, t1 and t2 from a baseline filling

time. Since we expect the trapped population to follow a curve N(t) = N0e
−(t−t0)/τ , we can

write the lifetime based on the two measurements as:

τ =
t2 − t1

log(N1/N2)
(1.9)

Note that since the lifetime value depends on the ratio N1/N2, we need only take relative

measurements and the detection efficiency cancels to first order. While this gives the

lifetime of a neutron within the bottle, it is not a priori known that the only mechanism for

loss is beta decay. We generally encounter additional loss terms which impact the bottle

lifetime, such as material and residual gas interactions and alternative escape trajectories.

The lifetime is therefore extracted by measuring all loss terms and computing:

7



1

τ
=

1

τn
+

∑
loss sources

1

τloss
(1.10)

Following the development of improved sources for ultracold neutrons, bottle experiments

rose in viability for competitive precision measurements of the neutron lifetime. An early

example of this was the MAMBO experiment[3] at the Institut Laue-Langevin national

laboratory. The apparatus, seen in Figure 1.2, has a storage volume consisting of glass

walls coated in Fomblin Y Vac18/8 oil ([F3CCF2OCF2CF5]n), a fluorinated polyether with

a Fermi potential of 106.5 neV. Fomblin oil is a highly viscous liquid with an average

molecular weight of 2650amu, a relative vapor pressure of 2× 10−8 at room temperature, a

loss probability of 3× 10−5 on reflection, and a high level of uniformity and film

renewability on the glass substrate. The glass volume is a rectangular box with h=30cm,

w=40cm, and variable length x < 10cm. To vary the length, the far wall was mounted on a

piston with better than 0.05 mm precision in linear movement. Furthermore, this wall had

a surface of sinusoidal corrugations to redirect the forward-biased incoming flux of UCN to

be isotropic within the storage volume. The adjustable length of the box serves to control

the volume-to-surface-area ratio of the storage volume, which in turn influences the mean

free path between wall collisions λ = 4V/S. Since the wall loss rate is described by

1/τwall = µ(v)v/λ and is therefore energy dependent, the storage times for each run can be

chosen to be directly proportional to λ to return the same average number of wall

interactions per storage cycle. This number could then be extrapolated to zero. The

resulting lifetime measured after corrections was published in 1989 as τn = 887.6± 3.0s.[3]

The MAMBO group repeated the experiment with a new apparatus called MAMBO II[1]

(Fig. 1.3) which aimed to follow up on the preceding experiment with additional controls

over the systematic errors. To ensure the UCN spectrum was independent of trap volume
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Figure 1.2: Diagram of the MAMBO experiment apparatus.[3]

and to reduce the upper limit of UCN energies, the storage population was conditioned by

use of a prestorage volume with an adjustable polyethylene absorber forming the upper

surface. Once the high energy UCN were eliminated, the population was fed into the

storage volume and the experiment proceeded identically to MAMBO I. The outcome of

this experiment came to 880.7± 1.8s, significantly lower than the MAMBO I result. The

newer value was determined to be more trustworthy due to the results of the systematic

studies on µ(v) as well as the greater agreement of the counts per storage time to a

decaying exponential.[1]

Another noteworthy bottling experiment is the Serebrov Gravitrap[2] developed at the

Petersburg Nucler Physics Institute and performed at ILL, which followed up on an earlier

Gravitrap measurement done by Kharitonov et al. The apparatus (Fig. 1.4) consisted of a

low-temperature Fomblin (LTF) coated storage spherical or cylindrical volume with a

window at the end, which could be rotated to various angles. With the window pointing

down, the trap could be loaded from the source or unloaded into the detector. This storage
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Figure 1.3: Diagram of the MAMBO II experiment apparatus.[1]

volume would trap UCN through the LTF wall potential from the bottom and sides, and

by gravity above. The angle of the window determined the upper limit on the trappable

population of UCN. As such, the trap could be emptied in steps of successively lower

window angles to measure any spectrum dependence in the UCN storage. An example of a

typical run cycle can be seen in Figure 1.5. The gravitational spectroscopy allowed for

control over multiple spectrum based systematic effects. A detailed Monte Carlo simulation

was performed to investigate the accuracy and reliablility of the experiment. The 2005

result was published as 878.5± 0.7stat ± 0.3syst, significantly less than the PDG average of

all lifetime values from previous experiments.[2]

The deviation of the Serebrov result from the world average by 5.6 σ called into question

the results up to that point. However, further investigation into the type of experiment

from recent years shows a further discrepancy. If one averages the beam experiment

lifetimes, the result comes to a world average of 887.1(2.2) s, whereas an average of bottle

experiments comes to 878.5(0.8) s, in line with the Serebrov result (Figs. 1.6, 1.7). This
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Figure 1.4: Gravitrap II storage apparatus used by Serebrov.[2]

shows that there exist either confounding systematics or unaccounted-for physical processes

which are different between the two measurement methods. Since the beam experiments

are appearance measurements while the bottle experiments are disappearance

measurements, one such example might be a seperate decay branch of the neutron into

products other than p+ e−+ νe. As a means of resolving this discrepancy, it is necessary to

perform new experiments which avoid the systematic errors associated with the previous

experiments. If the discrepancy is an artefact of the experimental design, then careful

consideration of these systematics should reveal the source of the discrepancy in lifetime
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Figure 1.5: Timing diagrams for the short and long storage cycles used in the
GravitrapII experimental run.[2]

values obtained by beam and bottle methods.
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Figure 1.6: List of results from various notable lifetime measurement experi-
ments.[18]
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Figure 1.7: Plot of recent lifetime experiments, with distinction between bottle
experiments (red) and beam experiments (blue). The delay between the 2005 Se-
rebrov result and its acceptance into the PDG world average can be seen in the
post-2010 drop in the line.
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CHAPTER 2

EXPERIMENTAL SETUP OF UCNτ

2.1 Overview of the UCNτ Experiment

The UCNτ experiment located at Los Alamos Neutron Science Center (LANSCe) aims to

provide a precision measurement of the free neutron lifetime using a novel bottling

technique that maximizes storage volume and experimental flexibility. The UCN storage

volume consists of a 670 L asymmetric magneto-gravitational trap formed by a

bowl-shaped halbach array of NdFeB permanent magnets, with a maximum depth of 50cm

from the lip of the trap. This open-topped setup allows both the storage of UCN with

E<50neV with minimal wall interactions and access to the storage volume for in-situ

measurement of surviving neutrons. This in-situ detector makes use of neutron capture on

vanadium, and will be discussed in greater depth in Chapter 4.

2.1.1 UCN Production

The neutron source at LANSCe creates neutrons from a tungsten spallation target. These

neutrons are thermally cooled to around 4K and subsequently slowed by downscattering

through a solid deuterium (D2) crystal, producing neutrons with a continuous energy
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Figure 2.1: Schematic layout of the UCNτ experiment and UCN transport system.

distribution, trappable within the source volume up to 300 neV. There is a flapper above

the D2 crystal at the entrance of the source storage volume which remains open for a 0.2s

time window after each beam pulse during normal operation. Once in the source storage

volume, the UCN diffuse into the transport guide system through a 3 inch stainless steel

guide (VF = 250neV) and exit the source shielding wall with a density around 60

UCN/cm3[4]. The shield wall exit point is immediately followed by a gate valve backed by

a downstream neutron absorber as well as an aperture upstream of the gate valve which

leads to a drop guide and a neutron detector for relative monitoring, which is referred to as

the gate valve monitor. The spectrum at this point has been measured through

downstream monitoring to be weighted by velocity v as N(v) ∝ v2.7 according to fits, with

an angular distribution N(cos(θ)) ∝ cos(θ)1.5 (see Fig. 2.2). These values are useful for

transport simulation, as will be discussed later.
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Figure 2.2: UCN energy (left) and angular (right) distributions, measured at source
exit.

2.1.2 UCN Spin Polarization

In order to polarize the UCN population for magnetic storage, a 1m long prepolarizing

magnet (PPM) is placed immediately downstream of the gate valve monitor. The PPM is

a superconducting electromagnet which generates a field of 7 T parallel with the neutron

guides at that point. At the center of the field region, the guide contains a Zr window

(VF ≈ 100 neV). When the field is applied, low field seeking UCN are repelled and high

field seeking UCN are accelerated through the window. Hence, downstream of the PPM

the UCN are 100% polarized in the high field seeking spin state. Since the magnetic

trappability of the UCN relies on them all being low field seeking, it is necessary to flip the

spin states using a low-field adiabatic fast-passage spin flipper with B0 ≈ 140G and

f ≈ 0.4MHz. A major component of the transport efficiency relates to ensuring that the

UCN do not spontaneously flip spin states during transport, which can occur during wall

interactions or upon passing through a region of zero magnetic field. To prevent such field

zeros from occuring, a series of holding field coils carrying 300A provides a 60 to 90 Gauss

field along the long radius of the trap (See Figure 2.3) to create a constant nonzero field
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perpendicular to the Halbach field gradient.

Figure 2.3: Orientation of the electromagnetic field coils used to prevent field zeros
within the trap volume. The iron flux return pictured was not included in the final
experimental setup.[7]

2.1.3 Detection Methods

Several UCN detectors are installed along the transport system to determine UCN trap

population stability and quality of source production. Upstream of the gate valve, there is

a vertical 3/8” aperture with a drop guide into a 3He MWPC detector. This exists as the

primary means of monitoring the beam level and assessing the stability of the UCN flow

out of the source. Downstream of the trap opening, there is a boron coated detector which

was initially appended to the end of a 1m stainless steel drop guide. This setup was later

replaced with a directly appended ZnS detector. Discussion of the different varieties of

detector will be presented in Chapter 4. The purpose of this detector is two-fold: first, it

provides a secondary measure of beam stability subject to the various loss parameters in

the guide system, and second, it provides a means of measuring the surviving UCN in the

trap through a draining measurement. This type of fill-store-empty measurement is not the

main means of storage measurement, but serves as a means to compare with methods used

by previous experiments. Later iterations of the experiment utilized a third guide monitor
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upstream of the trap which is mounted on a vertical tee off of the main guide. The ZnS

detector is placed level with the Halbach array rim as a means of measuring the

untrappable component of the UCN spectrum. This extra “standpipe” detector serves to

improve our knowledge of any changes in the spectrum of the UCN produced by the

source. Finally, there is a vanadium based in situ detector which is placed on top of the

trap and can be lowered into the storage volume for detection of trapped UCN. More

details on this setup will be described in Chapter 4.

2.1.4 Spectral Cleaning

One prevailing issue with bottle measurements of the neutron lifetime is the existence of

quasi-trapped or marginally trapped neutrons. These are neutrons which are above the

energy threshold to be trapped, but which have orbits that remain within the trap for

times on the order of the neutron lifetime. Failure to control for these marginally trapped

UCN results in an additional loss component which prevents a reliable lifetime value to be

ascertained. The design of the UCNτ trap is such that the trappable energy threshold is

50neV and UCN above that threshold will escape predominantly by falling out of the trap

through the open top. An effective means of eliminating this marginally trapped

population is through spectral cleaning to eliminate UCN above the threshold energy. This

is accomplished by the use of a cleaner consisting of a polyethylene surface which is lowered

to a specified height below the trap rim for a short time just after the trap is populated.

Any UCN which interact with the cleaner surface upscatter with high probability and are

removed from the trap population. In accordance with simulation, this cleaner is set to a

height of 42.5 cm for the duration of the cleaning, which is expected to achieve full

cleanout within 30s (See Figs. 2.4 and 2.5). While these predictions utilize a cleaner which

fully occupies half of the trap cross section, the cleaner used for actual studies is much
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smaller, at around 2’ by 1.5’. To supplement this smaller area, a larger, immovable

polyethylene cleaner surface was installed over the other half of the trap volume to provide

a larger area cleaning at a cleaning height of 50cm. The two cleaners in tandem achieve the

30s cleaning prediction for marginally trapped UCN.

Figure 2.4: Simulated fraction of marginally trapped UCN as a function of cleaning
height. Results are shown for smooth field (closed circles), one-way ripple (open ci-
rcles), and two-way ripple (open squares) models of the surface magnetic field. The
one-way ripple model (open circles) is representative of the field used in UCNτ .[7]
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Figure 2.5: Predicted population curve for marginally trapped UCN at cleaning
heights h=44cm (upper curve) and h=42cm (lower curve).[7]

2.1.5 Trapping UCN

In order to compute the neutron storage lifetime within the trap, a typical experimental

run proceeds as follows. The UCN source is turned on with the gate valve open for a

specified filling time to allow the UCN to diffuse down the transport guides. During this

time, the flux of the UCN is monitored through several guides split perpendicularly off the

main beam line. Below the trap, the UCN encounter a junction in the guides which will

henceforth be referred to as the cross assembly. The purpose of the cross assembly is to

provide a mechanism by which a 6.75 in by 7 in section of magnets (i.e., a trapdoor) is
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lowered out of the Halbach array to allow the UCN to access the storage volume. The

UCN are allowed to diffuse upward through the trapdoor during the fill until the trap

population saturates. After this point, the trapdoor magnets are returned to the array

sealing the trap off from the guide system, the gate valve is closed, and the beam is

disabled. After a certain amount of storage time t1, the remaining UCN are measured

using the vanadium absorber and the number of counts is recorded as N1. Once the trap is

confirmed to be empty, the process is repeated for t2 > t1 yielding a count of N2 neutrons,

with the relative flux monitors ensuring that the source and transport quality are

unchanged. In the absence of backgrounds, the lifetime is given by:

τ =
t2 − t1
log N1

N2

(2.1)

We can simplify our mathematics by defining t ≡ t2 − t1 as the time between

measurements. Treating each measured quantity as independent, the uncertainty in τ is:

στ 2 =

∣∣∣∣∂τ∂t
∣∣∣∣2 σt2 +

∣∣∣∣ ∂τ∂N1

∣∣∣∣2 σN2
1 +

∣∣∣∣ ∂τ∂N2

∣∣∣∣2 σN2
2 (2.2)

where σt2 = σt21 + σt22 is the combined uncertainty for the time measurements. Note that

σNi =
√
N (2.3)

for UCN counts.
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The partial derivatives are found to be

∂τ

∂t
=

∂

∂t

(
t

log N1

N2

)
=

1

log N1

N2

(2.4)

∂τ

∂N1

= t

(
1

log N1

N2

)2
N2

N1

1

N2

=
t

N1 log N1

N2

2 (2.5)

∂τ

∂N2

=
∂

∂N2

(
t

log N1

N2

)
=

∂

∂N2

(
−t

log N2

N1

)
=

−t
N2 log N1

N2

2 (2.6)

Combining the above equations gives the uncertainty

στ 2 =
σt2

log
(
N1

N2

)2 +
t2

log
(
N1

N2

)4 (σN2
1

N2
1

+
σN2

2

N2
2

)

=
1

log
(
N1

N2

)2
σt2 +

(
t

log N1

N2

)2(
1

N1

+
1

N2

) (2.7)

Now, since we wish to consider the minimum of στ as we vary t2 (and therefore t), we need

to consider the functional relationship between the measured observables. In particular1,

N2 = N1e
−t
τ (2.8)

1In truth, this statement only holds true for the actual values of Ni and t. For the measured values, we pro-

pose that the real values are found as X = X +O(σX). Then N2 +O(
√
N2) =

(
N1 +O(

√
N1)

)
e
−(t+O(σt)

τ =

N1e
−t
τ e

−O(σt)
τ + O(

√
N1)e

−t
τ e

−O(σt)
τ . Expanding the exponentials (and dropping the O functions for rea-

dability) gives N2 +
√
N2 = N1e

−t
τ

(
1 + σt

τ + σt2

2τ + . . .
)

+
√
N1e

−t
τ

(
1 + σt

τ + σt2

2τ + . . .
)

. We later make

the assumption that N1σt � τ , which reduces the expression to N2 +
√
N2 =

(
N1 +O(N1σt

τ )
)
e
−t
τ +(√

N1 +O(
√
N1σt
τ )

)
e
−t
τ =

(
N1 +O(

√
N1) +O(N1σt

τ )
)
e
−t
τ . For a sufficiently large storage volume,

√
N �

N , and the expression reduces to equation (2.8)
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Equations (2.1) and (2.8) may be used to simplify (7), yielding

στ 2 =
1

log
(
N1

N2

)2 (σt2 + τ 2
(

1

N1

+
1

N1e
−t
τ

))
(2.9)

⇒ στ =
τ

t

√
σt2 +

τ 2

N1

(
1 + e

t
τ

)
(2.10)

Therefore, we minimize the lifetime uncertainty when

∂σt

∂t2
=
∂σt

∂t
= 0 (2.11)

⇒ 0 =
∂

∂t
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τ

t

√
σt2 +

τ 2
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(
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τ
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√
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(
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t
τ

)
+

τ
t
τ
N1
e
t
τ

2

√
σt2 + τ2

N1

(
1 + e

t
τ

) (2.12)

⇒ 2N1

(
σt2 +

τ 2

N1

(
1 + e

t
τ

))
= τte

t
τ (2.13)

Defining x = t
τ

yields the equation

2N1σt
2 + 2τ 2 + 2τ 2ex = τ 2xex (2.14)

If we perform a measurement with sufficiently precise timing that N1σt� τ , the τ 2s cancel

and this result simplifies to
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2 + 2ex = xex (2.15)

⇒ 2

e2
= (x− 2)ex−2 (2.16)

⇒ x = 2 +W (
2

e2
) (2.17)

where W is the Lambert W function2. We can evaluate numerically W ( 2
e2

) ≈ 0.2177 . . ..

We substitute back for the variables t1 and t2 to determine that the minimum lifetime

uncertainty is obtained whenever3:

t2 = t1 + 2.2177τ = t1 + 1951.8s (2.18)

As such, we plan for the long storage runs to be roughly 2000s longer than the short

storage runs to maximize our statistical precision. A treatment of the case in which there is

nonzero background is given in Appendix 1.

2.1.6 Data Acquisition

In order to obtain detector signals with accurate timestamps from the detectors during the

running of the UCNτ experiment, a data acquisition system was created using Versa

Module Europa (VME) computer bus modules. The signal processing chain is detailed in

Figure 2.6 and will be described in further detail in this section. Front end control of the

DAQ hardware and data recording was performed using sofware based on the MIDAS

2The Lambert W function is defined as the inverse function of y = xex. In general, it is a complex
function with multiple branches; however, for real, positive values the result is real and single-valued, so
there is no issue with solving the equation in this manner.

3Using the 2012 PDG value of τ = 880.1± 1.1
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framework with ROME-based online analysis and data visualization based on the signal

data. The anode signals from the ten NaI detectors are fanned out to the QADC, the

discriminator, and the digitizer using FIFO NIM modules. The QADC line is amplified

using a PS/777 variable linear amp and passes through a 64ns passive delay line to align

the signal with the global trigger gate. The signal from the beta PMTs are fanned out to

the discriminator and the linear amplifier, the latter of which sends the signal to the fADC

and the QADC. Finally, the signals from the UCN detectors (gate valve, downstream

monitor, standpipe monitor) are sent to the FADC, discriminator, and PADC. The

analyzer arranges the data from the 17 channels and submits the channel, realtime,

timestamp, energy, and IO register to both .root and .flat output files for further analysis.

The online analyzer displays histograms of signals from each channel for the sake of

monitoring the progress of each run.

The slow DAQ synchronizes the data acquisition with the output signals to the various

components of the experiment. A typical structure of the slow DAQ signal generation for

an experimental run is seen in Figure 2.7. The start signal from the slow DAQ activates

the ROME online analyzer and the data acquisition routines, and sets each of the togglable

settings to their default states. At t=0, the beam veto is disabled, the gate valve is opened,

and the trapdoor is set to the down position in preparation of a fill. After the filling is

complete, these settings toggle their state and the cleaner is lowered into the now closed

trap. After the specified cleaning time, the cleaner is raised and the experiment enters its

storage phase. Following this, the vanadium dagger is lowered into the trap and alllowed to

absorbe the UCN for the saturation time, and then the trap is open and the vanadium is

raised into the detector housing for counting. Upon the termination of the counting phase,

the slow DAQ records the timing parameters and other useful information and returns to

the default state.
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Figure 2.6: Diagram of the signal pathways in the data acquisition hardware.

2.2 2013 - 2014 Run: Proof of concept

In the Fall of 2013, the experimental apparatus was assembled and a series of trial runs

were carried out. During these runs, the fill time was set to 180s, the cleaning time was set

to 30s, and the storage time was varied between 100s and 2000s, with the former two values

determined by simulation. After storage, the Al shutter downstream of the cross assembly

was opened and the surviving UCN were drained into the downstream 10B detector, which

was used for monitoring during the fill. Figure 2.8 shows the histogrammed output from the

detector in a typical run with tstore = 150s. The count rate for the background during the
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Figure 2.7: A typical timing pattern for each moving component controlled by the
slow DAQ.

holding period fits to the function B(t) = B0e
−βt +B1, where the second term represents

the constant background and the first term represents the slow drain (β ≈ 0.15s−1) of UCN

from the filling phase. The mean rate R during the fill between tpre and tfill (the flat region

from Fig. 2.8) gives a normalization factor for the trap population during one run for a

sufficiently stable UCN beam; this stability is determined by cuts on the fluctuation of the

ratio of shutter-open counts to R. The signal is then found by integrating:

S =
1

R

1

δt

∫ tempty+100

tempty

[D(t)−B(t)]dt (2.19)

where δt is the integration bin width and D(t) is the detector rate while emptying. After

20 hours of running, the signal was plotted against tstore and fit to an exponential by least

squares. The result, as seen in Figure 2.9, is a storage lifetime of 860± 19 s (χ2/ν = 0.87)
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Figure 2.8: Typical timing plot of received counts by the downstream detector
during a typical run. tempty − tfill = 150s. Note the drop in detected UCN at the
time of shutter closing tpre

with the holding field active and 470± 160 s (χ2/ν = 1.17) with it inactive. The fit is in

agreement with the computed two-point measurement of τ as well as with the PDG global

average for τn. The estimated trap population was on the order of 104 UCN per storage.

This result demonstrates that the trap volume functions as desired to hold UCN for periods

of 2000s and suggests areas for improving on the experimental run, such as improvement of

transport and use of in-situ detection, both of which are subsequently incorporated.[5]
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Figure 2.9: Fit of storage measurements to exponential. The fit demonstrates the
efficacy of the storage volume.[5]
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CHAPTER 3

GEANT4 SIMULATION WORK

3.1 Geant4 Overview

Geant4 is a C++ toolkit for particle transport first published in 1998 by a CERN-based

team of researchers based on the previous Geant3 code as a means of simulating the

transport of particles through matter. It provides a framework for creating a wide range of

computational studies, including full scale detector Monte Carlo simulations. The base

code contains a set of physics models which can be incorporated into the simulation as

needed to describe the relevant physical processes to be used. The abstract representation

of a set of physical processes to be simulated is referred to as an event. The event exists in

the G4Event class and contains all relevant physical and organizational parameters for

describing the state of the simulation, such as primary event vertices and particles, while

avoiding the retention of transient information. As a particle propagates within an event, it

follows a track described by a series of steps which discretize the application of relevant

physics. These processes apply in three cases; “at rest” for stationary particles, “along

step” for particle behavior that happens continuously along a given step, and “post step”

for behavior which relies on the final state of the step. Geant4 also allows for the creation of

geometries, which are coded first as logical volumes which define the shape and attributes
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independent of its physcial location, and secondly as physical volumes which places the

logical volume within the world volume at a particular location. The logical volume

geometries are defined through the boolean combination of simple solids such as rectilinear

boxes, spherical and cylindrical sections, toroid sections, and paralellepipeds. The material

and detector properties are defined based on the logical volume within the code, and can

be used to define sensitive detectors to extract track parameters upon interaction[9].

To facilitate the development of simulations for UCN detection and transport, a package

known as Geant4UCN was developed by Gabriele Cosmo et al. This package compiles the

relevant physical processes for low energy neutrons into easily modifiable classes. In

particular, it incorporates neutron beta decay, forces from gravity and time dependent

magnetic fields, 1/v absorption and upscattering cross sections, multiple scattering, spin

tracking, and material boundary interactions. Spin tracking is handled in the adiabatic

case, and records a plus or minus spin relative to the UCNTimeDependentMagneticField as

defined in the code. The material boundary parameters are of particular importance for

transport simulations, and Geant4UCN simplifies these interactions into the parameters:

Fermi Potential, Reflectivity, Diffusivity, Loss, Spinflip Probability, and the various cross

sections for bulk propagation. Furthermore, shutter definition is enabled such that physical

volumes have these parameters toggled during particle transport[6].

3.2 A Simulated Lifetime Experiment

Prior to the completion of the UCNτ experimental apparatus, it was necessary to simulate

the experiment’s performance in Monte Carlo. To accomplish this, a Geometry Description

Markup Language (GDML)[8] geometry definition file was created to model the planned

experiment for use in Geant4. Particles were created in the primary generator with the v2.7
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Figure 3.1: Wireframe visualization of the Geant4 model of the UCNτ experiment.

distribution fit mentioned in the previous chapter (Fig. 2.2) uniformly across a 2d plane

20cm upstream of the gate valve monitor aperture. The rest of the geometry maps the

guide structure planned to be used, with a straight stainless steel guide with a meter of

diamond-like carbon (DLC) in place for the spin flipper field, the cross assembly at the end

of the steel guide, an approximated trap volume above the cross assembly, and an elbow

down to a far detector on the downstream exit of the cross assembly, as seen in Figure 3.1.

The materials used have been summarized in Table 3.1. Any zero values within the table

indicate that these parameters have little impact on the simulation results. Notably, as the

polarization was set through definition in the primary generator as opposed to arising

through physical acceleration, the Zr window within the PPM magnetic field region was set

to a Fermi potential of zero to account for the acceleration of the particles. The geometry

within the cross assembly was reproduced exactly from chematic models, aside from

hexagonal bolts being coded as cylindrical. While the vacuum jacket was able to be coded

in a highly accurate manner in the areas in the path of UCN, the asymmetric array was
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unable to be simply defined. The shape of the Halbach array is defined as two toroid

sections, one from a toroid with major radius 1m and minor radius 0.5m and the other with

major radius 0.5m and minor radius 1m. Since the improper torus is unable to be defined

as a physical volume in the GDML file, that half of the array was procedurally generated

to follow the appropriate shape; the other half had no such issue and was defined as a

normal toroid section. For similar reasons, the magnetic field interaction of the UCN with

the Halbach array was not coded, but rather the magnets were defined as perfect reflectors

with a spin value check on interaction to incorporate the effect of spinflips on trappability.

Given this deviation from reality, any finer details of in-trap particle trajectory simulation

were handled by a parallel non-Geant4 simulation carried out by Dan Salvat.
Material VF (neV) Diffusivity Loss per bounce Spin Flip

Stainless Steel 186 0.03 1.25× 10−4 1.25× 10−3

Copper 168 0.04 1.55× 104 1.7× 10−5

Aluminum 54 0 1.86× 10−5 0
Nickel 252 0 2.6× 10−4 0

Zirconium 80 1.0 8.09× 10−6 0

Table 3.1: Properties used in the material definitions for Geant4.

The detectors in the physical apparatus were simulated as sensitive detectors which

recorded the position, momentum, energy, spin, particle ID, and timestamp of any particle

that encounters those volumes and then removed the particle track. The geometry was

irrelevant beyond the exposed surface to the UCN volume so these detectors were modeled

as a totally absorbing disk covered by a window of the appropriate thickness. In addition,

a scorer was placed at the trapdoor with the same outputs but without destroying the

particle for the sake of tracking the flux through the trapdoor. This scorer allowed for the

measurement of particle states as the UCN enter the trap as well as a means of tallying the

trap population together with the particle death timestamps for those UCN which decayed

or were otherwise destroyed within the trap. To track the population, 50000 UCN were
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generated at t=0 and the momentum and timestamp of each particle was recorded. The

interval for a particle within the trap could be extracted by identifying all points at which

the particle crossed the scorer with pz < 0 as well as the final timestamp in the particle

track. By matching each of these points with the most recent preceding value for that

particle ID crossing the scorer with pz > 0, summing the collection of intervals, and

dividing by the total number of events, we obtain the probability over time P (t′) that a

particle can be found in the trap, as seen in Figure 3.2. If we establish a generation curve

G(t), then we can infer the trap population by convolving:

P ∗G(t) =

∫ ∞
−∞

P (T )G(t− T )dT. (3.1)

An example of this can be seen in Figure 3.2 (right) in which G(t) is represented by a

boxcar function from t=0 to t=230 with height normalized to represent a source density of

25 UCN/cc. This trap population analysis has been improved by adding a start time in

accordance with the generating function; in this case,

t′0 = t0 + 230.0 ·G4UniformRand() ∗ s. This yields a smoother population curve at higher

statistics, and will be used for subsequent runs.

Another use for the trapdoor scorer is to investigate the phase space of the particles

entering the trap. The energy of these particles is particularly relevant because any UCN

with EUCN > 50neV at the trapdoor will be untrappable or marginally trapped. Typically

for the standard simulation geometry, the trap UCN spectrum extends up to around 150

neV, with a small proportion of the curve below the 50neV threshold. An investigation was

made into the effects of elevating the trap height above the beamline by some additional

amount. An s-bend was added to the simulation upstream of the cross assembly as shown

in Figure 3.3. The length of the straight section between the two elbows was altered to
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Figure 3.2: Left: Probability of a particle being in the trap vs the time since that
particle’s generation. Right: Trap population derived from the probability plot.

compare the h=0 case with an additional elevation of 500 mm. The resulting shift in trap

spectrum can be seen in Figure 3.4. While the percent of generated particles remains

comparable, there is a reduction to untrappable UCN in the spectrum, which could have

some use in controlling the systematics. However, in terms of implementation, the only

means by which this could be utilized to control the marginally trapped UCN population

would be to either elevate the trap an additional 600 mm such that no UCN exist above

the trappable range or to allow the height to be modifiable such that various proportions of

untrappable to trapped populations could be measured. Both of these were physically

unachievable and as such this study did not result in any alteration to the geometry.

The efficiency of transport will depend on the parameters of the guides being used to carry

the UCN from the source to the trap. When planning the guide setup, 4 inch and 3 inch

diamaeter guides were available; while the larger guide size offered fewer wall interactions

per length, there were existing 3” diameter bottlenecks at the PPM and cross assembly

entrance. On top of this, there was an option whether we would use stainless steel guides

which offered a higher Fermi potential and lower loss per bounce or copper guides which

offered a lower spinflip chance per bounce. We ran a simulation comparing the four guide
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Figure 3.3: Geant4 model of UCNτ with added elbow for additional height.
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Figure 3.4: Histogram of the energy of particles at the trapdoor when h=0 (left)
and h=50cm (right)

components, and the result showed that copper was superior to stainless and that the larger

guide diameter resulted in an improved trappable population (see Table 3.2). However, this

assumed a simple coupling between the 3 inch and 4 inch guides, which was not successfully

implemented, and as such the final decision was to go with the 3 inch copper guides.
Guide 3” SS 4” SS 3” Cu 4” Cu

Guide Eff. 0.113 0.236 0.102 0.227
Polarization Eff. 0.839 0.864 0.995 0.998

Trappable E 0.182 0.192 0.228 0.242
Total Eff. 0.021 0.045 0.023 0.055

Table 3.2: Comparison of guide materials and diameters in terms of guide efficiency,
polarization efficiency, and proportion of UCN within the trappable energy range.
Simulation used 50,000 events per run

In the process of simulating UCN transport, it became clear that there were several issues

with the cross assembly. Firstly, the cross section of access to the trap from the guides was

very small, resulting in very long trajectories within the cross assembly before a UCN

entered the trap. Compounding this was the fact that the cross was stainless steel which

had a high depolarization probability compared to other materials in the system. Finally,

the location of the trapdoor in the open position created the issue of large irregular
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magnetic fields directly in the path of the UCN to the trap; analysis done by Chen-Yu Liu

demonstrated that these errant fields would inevitably create field zeros which amplified

the chance of UCN depolarization during the trap fill. In the interest of investigating

alternate forms of cross assembly, several new geometries were simulated. In particular, we

investigated designs which utilized a more direct line of approach into the trap which could

replace the trapdoor once it had been retracted by a far greater degree. As a toy model of

such a design, a geometry in which the cross assembly was replaced with a copper elbow

directly feeding into the trap was created and compared to the earlier population curves.

This toy model showed a factor of 4 increase in the trappable population (Fig. 3.5), which

validated the concerns over UCN access to the trap.

The implementation of this idea was more involved, as the elbow prevented the trap from

being able to be closed. The idea of having the trapdoor retract fully below the beamline

and having a movable electropolished copper flap redirect the UCN vertically into the trap

by covering the trapdoor at a 45◦ angle resolved the issue, and the final design is shown in

Figure 3.6.

3.3 Guide Test Analysis

In September 2013, the assembly of the UCN guides was accompanied with a series of

measurements to determine the relationship between UCN transport and the equilibrium

density within the trap and to determine the parameters that characterize the UCN

transport system. The transport system was divided into three regions of interest as in

Figure 3.7 and measurements were taken at the boundary positions 1 through 4. There

were four types of measurements done at each location: A simple transmission

measurement through that region (NP); a transmission measurement with a spin-sensitive
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Figure 3.5: Population plot with the default cross assembly (red) and with a direct
elbow into the trap (blue). Y axis scale is arbitrary.
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Figure 3.6: Left: Original cross assembly design. Right: Improved cross assembly
with fully retracted trapdoor and moving angle flap.

Figure 3.7: Diagram of the UCNτ guide geometry with the sections defined for the
2013 guide tests.
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Figure 3.8: UCN detected at each position (plot) and transmission ratios (table)
for each type of run from the 2013 guide tests.

detector for measuring depolarization (Fe); a transmission measurement with a pinhole

present at one end (SP); and a bottling measurement, where a pinhole is present on either

side of the region and the region is filled to equilibrium (DP). Each measurement was

intended to separate the effects of each guide parameter as much as possible, though some

overlap is still present.

The results of this test are summarized in Figure 3.8. The largest transport losses occurred

in Regions A and C, with the latter expectedly demonstrating the inefficiency of the

stainless steel cross assembly. The fact that the pinhole transmission measurements are

significantly larger for Regions A and B suggests that the specularity of the guides is

suspect. In order to determine the guide parameters, a Geant4 simulation geometry was

created to match the guide test in its various positions. The parameters to be tested are

the Fermi potential (FPOT), loss per bounce (LOSS), and diffusivity (DIFF). The goal is

to scan the effect of modifying each of these parameters on the transmission in the various

states, and to match to the experimental results to find a region of agreement. For the

direct measurements, LOSS and FPOT are difficult to distinguish, as both have
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Figure 3.9: Signal from each region’s bottling (two pinhole) measurement, with fits.

comparable resulting losses in the absence of spectral sensitivity in the detector. Since both

can result functionally from imperfections in the guide coating, it is necessary to use the

bottling measurements to determine the FPOT before proceeding with the direct

transmission measurements. Figure 3.9 shows the fitted bottling lifetimes in each region.

Unfortunately, the statistics for these measurements proved insufficient to establish an

improvement on the bounds set by theoretical considerations.

Due to the ambiguous results from the bottling measurement, the direct measurements

scan over FPOT as an effective Fermi potential with built in loss factor as a first order

determining factor for guide quality. Between this effective FPOT and DIFF, a matrix of
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reasonable values was created for the guide parameters and a two-variable scan was carried

out on the properties of the copper guides. The resulting region of interest for a coarse scan

can be seen in Figure 3.10. There are two regions of agreement, with the first occupying an

area around (DIFF,FPOT) = (0.95, 120neV) and the other around (0.5,100neV). Given

the pinhole results referenced above, it is likely that the lower DIFF region is trustworthy;

however, in either case, the effective FPOT is much lower than the expected value of Cu

(VF ≈ 168neV ). Furthermore, the likely presence of a cuprous oxide layer (VF = 139.6neV ,

See Appendix 2), is insufficient to explain this low value purely in terms of its effect on the

Fermi potential. As such, we conclude the existence of an anomalous loss factor, supported

by visible imperfections on the guide’s interior surface. For the subsequent experiment,

new copper guides were prepared as part of an overhaul in transport guide setup.

The spin depolarization measurement was analyzed independently to the other guide

parameters. In particular, due to the ambient fields present from neighboring experimental

magnets, notably the UCNτ holding field coils and the UCNA experiment’s AFP magnet

next to the transport system, it was necessary to make spin contrast measurements at

various field configurations in order to ensure that polarization could be preserved

regardless of the presence of external field sources. Figure 3.11 shows the different field

configurations used in this study. The contrast was obtained by using a modified 10B

detector with a magnetized iron window in place of the usual aluminum window. Such a

detector should accept solely high field seeking UCN, allowing the measurement of only one

spin state. From Figures 3.12 and 3.13, we see that the majority of the depolarization

occurs in Region C, providing another motivation for the replacement of the cross assembly

as mentioned in the previous section. It is clear that some field configurations are harmful

to the polarization, with the configurations providing the minimum contrast being

configuration 5 when the AFP is off and configuration 10 when the AFP is on. This result
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Figure 3.10: Region of interest from the two parameter coarse scan of the Cu guide
parameters.
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Figure 3.11: Description of each field configuration used in Figures 3.12 and 3.13.

allows us to set the field states to minimize the deleterious effects of ambient magnetic

fields during an experimental UCN fill.

46



Figure 3.12: Transmission ratios through each region using spin-sensitive Fe foil
detector as a function of different holding field configurations (Fig. 3.11).

Figure 3.13: Observed spin flipper contrast as a function of different holding field
configurations (Fig. 3.11).
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CHAPTER 4

DETECTOR DEVELOPMENT

4.1 Boron Detector

In order to detect UCN in the experimental run, we utilize the 10B(n, α) capture reaction

at low incident neutron energies. There are two branches of particle production which can

be used to detect a capture event:

10B + n→


7Li+ α Q = 2.792MeV, 6%

7Li∗ + α Q = 2.310MeV, 94%

(4.1)

Since the incoming energy is small compared to the Q value, we can approximate that the

outgoing particles carry all the energy of the reaction and are emitted in opposing

directions.[15] The capture cross section on 10B for 2200 m/s neutrons is 3835 barns; in

accordance with the 1/v dependence of the cross section, we can infer that the cross section

on the level of 5 m/s is around 1.7 Mb, with a mean free path of 44 nm. Pure 10B has a

fermi potential around VF = −7.4− 39.2i neV and pure 11B has a VF = 222.5 neV. Natural

boron contains roughly 19.8% boron-10 with the rest being boron-11; however, high purity

10B can be obtained at purity levels above 96%.
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Figure 4.1: Schematic of the 10B UCN detector. Connections between each com-
ponent sealed with o-rings (not shown).

To utilize the boron-10 capture reaction for neutron detection, we create an ionization

chamber which is coated on the interior surface with high purity 10B. Exactly one of the

particles should be emitted into the chamber from a wall interaction, at which point it will

ionize the CF4 gas within the volume. The construction of this detector is shown in Figure

4.1. The ionization chamber consists of a 7.620 cm stainless steel tube with outer diameter

of 7.620 cm and 1.65 mm thick walls. The downstream cap contains a high voltage

feedthrough to a 4.76 mm diameter copper anode which extends 5.080 cm into the

chamber, as well as a VCR feedthrough for vacuum pumping and for introducing gas into

the cell. The upstream end of the chamber consists of a 0.51 mm thick aluminum window

sealed by o-ring surfaces with a polyoxymethylene cap to isolate the conducting surface of

the detector from the UCN guides.
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The chamber is coated using a mixture of 0.0575 (± 30%) grams of 10B powder suspended

in a 4 gram mixture of acetone and polystyrene. This mixture is then sprayed manually to

coat the interior of the detector volume. Three coats of this spraying process results in a

layer thickness around 1.54 ± 0.46 µm, with levels of roughness which have not been

measured. As this thickness far exceeds the mean free path of a UCN in boron, we can

assume that the UCN do not penetrate deeply into the boron layer. As such, we can treat

the Fermi potential seen by the UCN as a step potential with height <(VF ), with the

associated reflection probability R = k0−k1
k0+k1

, where ki =
√

2m
~2 (Vi − EUCN). Averaged over a

smooth surface for all θ, this gives a reflection probability of 16% for a 50 neV UCN.

The ionization volume is filled with 500 mbar of CF4 and biased to 500V. The pulses are

measured using charge-sensitive preamplifiers, amplified by 6µs time constant spectroscopy

amplifiers and then read into a multi-channel analyzer. Calculations using SRIM2008

code[19] yield ranges of 3.03 mm and 3.63 mm for the alphas depending on branch and

1.68 mm and 1.89 mm for the 7Li ions (see table 4.1). These are small compared to the

distance between the anode and the wall, and as such we expect full deposition of energy

into the gas.

To test these detectors, we compare directly against 3He proportional counters by installing

both types of detector to either side of an electropolished guide tee mounted on the source

guide at the LANSCe UCN source. A gate valve is installed at the upstream end of the tee,

ahead of which a small aperture leads to a multi-wire proportional counter for monitoring

the incident flux of UCN. The pulse height spectra from the two detectors can be seen in

Figure 4.2. Notable features of the boron detector spectrum include two prominent edges

from the α and 7Li from the 94% branch, as well as a much smaller edge from the ground

state α. The signal from the ground state lithium is unable to be seen above the rest of the

signal around 1.02 MeV. The efficiencies are measured by looking at the spectra for each
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Figure 4.2: Comparison of the pulse height spectra from the 10B UCN detector and
the 3He detector.

detector with the gate valve open and subtracting the background derived from an

equivalent run with the gate valve closed. In order to calibrate energies, 5 mbar 3He is

introduced to the boron detector and the value of the resulting peak is matched to the

known energy peak value from 3He of 0.764 MeV. The resulting calculation shows that the

boron detector signal is (94 ± 8)% of that of the helium detector signal.

4.2 ZnS Detector

Ion Probability Energy (MeV) Range in 10B (µm) Range in ZnS (µm)
α 47% 1.46 3.5 4.2

α(g.s.) 3% 1.78 4.4 5.1
7Li∗ 47% 0.84 1.8 2.3
7Li 3% 1.02 2.1 2.5

Table 4.1: Maximum ion ranges for each emitted particle from 10B capture with
chances of being emitted in 2π, calculated using SRIM

While the boron ionization chamber detectors provide a cheap and easily constructed

alternative to 3He detectors, the use of a gas based detector for our experiment results in
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Figure 4.3: The ZnS-boron detector utilizes two thin films to produce scintillation
light which is captured by a photomultiplier tube.[11]

the need to implement an aluminum window between the detector volume and the guide

volume. In addition to introducing additional potential sources of leaks for the vacuum,

this window creates a potential barrier for the UCN with potential VF = 54 neV. As such,

there is an energy-dependent efficiency loss which necessitates a 0.5 m drop distance to

bypass. To remedy this issue, a new model of detector was designed which builds on the

10B(n,α)7Li capture reaction. Rather than using an ionization volume, the boron is coated

on top of a luminescent layer of ZnS:Ag, which scintllates upon incidence of either the α or

the 7Li produced from the neutron capture (See Fig. 4.3). The lack of gaseous component

removes the need for a material window and the outer 10B film is exposed directly to the

UCN volume. Based on the ion ranges from Table 4.1, we require the boron layer thickness

to be on the order of 100 nm and the ZnS layer thickness to be on the order of a few

microns. This will ensure full capture of UCN on the boron layer (95% at 3λUCN), full

escape of ions from the boron layer at most angles (no losses for θ<86◦), and full deposition

of energy into the ZnS layer. The light produced in ZnS is emitted at wavelengths peaking

around 450 nm with a characteristic decay time of 200ns. The pulse height spectrum for
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Figure 4.4: Pulse height spectrum for UCN capture on the ZnS (a) with location
of peaks marked 1 through 4 for the corresponding 10B capture products. Energy
is calibrated to 90% of the peak from a 148Gd α source, shown in (b).[11]

detected UCN is shown in figure 4.4.

In order to maximize the efficiency, it is necessary to optimize the thicknesses of each layer

as well as the purity of the boron. To this end, we utilize the model of the single layer

square 1D potential discussed in Appendix 2 to determine the reflection and transmission

of UCN in the boron layer:

R =

∣∣∣∣∣(1−
k2
k0

) cos(k1d)− i(k2
k1
− k1

k0
) sin(k1d)

(1 + k2
k0

) cos(k1d)− i(k2
k1

+ k1
k0

) sin(k1d)

∣∣∣∣∣
2

(4.2)

T =

∣∣∣∣∣ 4<(k2)<(k0)

(1 + k2
k0

) cos(k1d)− i(k2
k1

+ k1
k2

) sin(k1d)

∣∣∣∣∣
2

(4.3)

Where d is the thickness of the boron layer, ki are defined as usual, and the ZnS layer is

arbitrarily thick. The purity of the 10B influences the value of the Fermi potential, which in

turn influences k1, the k value for the boron layer. A series of calculations was performed

computationally using these formulae. The variation in boron purity showed a negligible
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Figure 4.5: Reflectivity (left) and absorption (right) in the boron layer at 96% purity
as a function of energy for various boron layer thicknesses. Red lines represent these
values in the absense of substrate and blue lines represent an arbitrarily thick ZnS
substrate on the far side of the boron layer.

effect above 96%, the minimum value assumed for pure 10B powder. As the detector

efficiency is expected to increase monotonically with boron purity, the rest of the

calculations were performed with 96% purity 10B (see Fig. 4.5). These calculations

suggested that a minimum boron thickness of 100 nm should be used, with any increases

being offset by the increased opacity of the thicker films to the ion products above 200nm.

Detector films of various thicknesses were prepared to verify these data experimentally.

The ZnS-boron detector was installed with one of the films onto a small aperture

offshooting from the main UCN source guide for detection (see Fig. 4.6) and data were

taken for a short period of time. In order to normalize the film areas seen by the incident

UCN, a TPX screen (Polymethylpentane, Mitsui Chemicals) with a 6mm diameter hole

was placed in front of each film to ensure consistent exposure area. The PMT was biased

to -1.7kV and digitized directly. The resulting efficiency is plotted in figure 4.7, and

confirms a saturation of efficiency at 100 nm. The fit depends on the thickness as

ε(d) = 0.23
(
1− e−d/29.3

)
, where d is the film thickness in nm.
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Figure 4.6: Setup for testing the various films prepared for the boron detector.[11]

Figure 4.7: Relative UCN efficiency as a function of boron film thickness, with
fit.[11]
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Figure 4.8: Decay scheme of Vanadium-52 from the NNDC.

4.3 Vanadium detector

In order to measure the trapped UCN in situ, a vanadium foil based detector was designed

to be inserted from above. Vanadium has a high neutron capture cross section as well as a

small, negative Fermi potential, which makes it highly effective as a neutron absorber.

Upon capturing a neutron, the vanadium-52 decays by beta emission into chromium-52

with a subsequent emmission of a 1434keV gamma with 100% branching ratio:

51V + n→52 V

52V →52 Cr∗ + e− + νe

52Cr∗ →52 Cr + γ(1434.06keV ) (4.4)

The lifetime of the 52V beta decay is 324 s [13]. By measuring the coincident beta and

gamma products, it is possible to reconstruct the UCN count from the decay curve of the

Vanadium. A 12” × 4” vanadium foil is set into an aluminum frame and suspended over
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the trap by an aluminum rod appended to an electric actuator with 1m range. In the fully

extended position, the vanadium extends to the bottom of the Halbach array just above

the trapdoor. When fully retracted, the vanadium sits at the center of a vertical extension

of the vacuum jacket. Parallel to the foil are seated a pair of scintillator paddles for beta

detection, one on either side of the vanadium. The edges of each paddle are lined with

wavelength shifting optical fibers coupled to a photomultiplier tube for collection of the

scintillation light. Exterior to the vacuum jacket extension are a set of ten NaI gamma

detectors arranged in two stacks as seen in Figure 4.9. The full detector housing is

surrounded on all sided by 2” thick lead shielding with the exception of a rectangular

opening for the actuator arm. For each measurement cycle, the vanadium is lowered into

the trap to absorb all surviving UCN and is then raised back into the detector housing. For

a typical counting time of 1000s, the decay products from the vanadium decay are counted

in coincidence and the total integrated counts are recorded. A detailed discussion of this

counting and the backgrounds associated with this measurement follows in the next

chapter.
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Figure 4.9: Detector housing for the vanadium detector when fully retracted. Two
of the NaI detectors are not shown.
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CHAPTER 5

BACKGROUND STUDY

5.1 Overview of Analysis Script

5.1.1 Data Layout and Retiming

During the 2014-2015 run cycle, we collected data on the UCNτ experiment which the

DAQ system output in both .root and .flat (plain text) formats. The latter format is the

basis for the analysis script, and records the information per run as seen in Table 5.1.

Column Data
0 Channel
1 Real Time
2 Timestamp
3 Energy
4 IOreg

Table 5.1: Layout of data in .flat files

The first step of the analysis is the retiming. Due to a known bug in the DAQ’s

reconstruction of the real time from the more reliable timestamp value, there are gaps in

the real time values in the flat files as generated. It is important to ensure accuracy in

timing to 10 ns resolution, as that is the minimum coincidence window used. Since the

timestamps are accurately recorded and the data are sufficienty dense in time, it suffices to
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reconstruct the real time by implementing a rollover counter for each channel. We can

greatly benefit from the inclusion of a regular 5MHz timing pulse in the DAQ system,

recorded in channel 16. For each channel, we can reconstruct the realtime as:

treal = (timestamp+ (maxclock · irollover)) · tbit (5.1)

where maxclock is the maximum timestamp value before rollover and tbit is the precision of

the timing clock, that is, 2 ns per bit. Whenever the timestamp decreases in value, the

rollover counter irollover is incremented by one. After performing this computation, the

value is compared to the most recent ch16 time and, in the event of disagreement by more

than the rollover time period, adjusted to the correct time window by adjusting the

rollover counter.

5.1.2 Formatting and Coincidence

Once the files are retimed, it is necessary for both ease of use and for minimizing memory

use during analysis to adjust the format of the data. The formatting script reads in the

retimed .flat files and outputs the timing and energy of each coincident beta event in .npy

format1 . As such, the major role of this script is to perform coincidence selection on the

data retimed by the previous script. To accomplish this, the data are split according to

channel number, and the real time and energy are saved to that array. Each channel is then

checked to verify the correct ordering by increasing time value. The relative monitoring

data from the gate valve monitor (ch0) and the standpipe monitor (ch3) are then saved to

their respective output files for later use in background and normalization calculations.

Subsequently, an array is formed with the two beta channels (14,15) and the ten NaI

1.npy formatting saves the data as a binary file in the structure of a python array, which can be read
much more quickly by subsequent analysis scripts.
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Figure 5.1: Difference in timing between beta and NaI events within the same 1µs
window in each channel.

channels (4-13), with each event tagged according to detector type and the combined array

sorted by increasing real time. Beta events with zero energy are ignored as nonphysical.

In the first coincidence method used, the script then begins its coincidence finding

subroutine, using this data array and the values for coincidence window ∆t = 100s and

offset δt = 100s based on Figure 5.1. The subroutine scans through the events until a beta

event is found. The event immediately before and the one immediately after are then

checked to see if they are (a) a NaI-type event, (b) have a time difference

|tbeta − tNaI + δt| < ∆t, and (c) if the event energy satisfies any specified energy cuts. The

time and energy of the beta event is then saved into the array of accepted coincident

events, along with the energy of the coincident NaI event2. Once this has been done for all

2There is some explanation needed for the energy chosen. Naively, the energy of the closest event is the
most “correct” value for the NaI energy associated with the coincidence. However, since the NaI spectrum of
the coincident events is the focus of this analysis, this has been edited to reduce redundancies in the output
spectrum. In its current form, the NaI energy for the coincidence if both surrounding events are within the
window is chosen to be the value of the subsequent event if that is closer in time or if the previous event has
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beta events, the entire output array is saved to a .npy output file.

However, this method assumes each gamma event deposits energy in just one detector. In

order to account for trajectories which, due to initial angle or scattering, deposit energy in

multiple detectors, the coincidence method was amended as follows. Rather than tagging

the channel by detector type, the channel number is preserved in the combined array (for

reasons that will become clear in the next section), and the subroutine continues as before

to scan the array until it reaches a beta event. Then, it opens up a maximum window of

events (I used 10 events, which is quite a large window) to search in either direction from

the chosen beta event. Within the loop, the time difference is calculated and the loop is

exited if the difference exceeds the window size. Then, the channel number is checked to

determine the type of the coincident event. If the channel is among the list of NaI detector

channels, then the energy is summed to a total energy counter. If the total sum is greater

than zero after the loop completes, the coincidence passes and the NaI energy is recorded

as the sum of the energies from that event.

The resulting data are then compiled into a plaintext file containing the

[t, ENaI , Esci, runtype] for each event from all runs. This file is subsequently converted into

a ROOT histogram list for further analysis.

5.1.3 Investigating Coincidence Data

In order to understand the results of the coincidence routine, there are several values that

we can calculate. The first task of importance is to identify the proper coincidence window

to use to maximize the signal to noise. Initial investigations as well as previous work on

already been used in a coincidence; otherwise, it will take the value of the preceding event. Should there be
a coincidence which only agrees with a value already used in a previous coincidence, then the NaI energy
for that event will be taken, but the event will be recorded as a double-counted event. Such events make up
between 5 and 10 percent of all NaI energies recorded, based on an arbitrarily chosen subset of a few runs.
Should this be an issue, the coincidence can be rewritten to trigger on the NaI events rather than on the
beta events.
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this question point to 100ns being an ideal timing window, with few issues arising from

expanding up to 1µs. I will hold off on posting the details for now, as many changes have

been made to the coincidence routine since the initial investigation, and this analysis

should be presented more precisely than current data allow.

The next task is to investigate the incidence of two beta events being within the same

coincidence window, which I will refer to as beta-beta coincidences henceforth. Since the

rate of beta event triggers is significantly slower than 10MHz, we do not expect a sizeable

rate of beta-beta coincidences in any given run. To verify this, an additional check was

added to the coincidence routine to tally the incidences of channel 14 and 15 events during

the inner loop. The resulting rates showed a 3% incidence rate before coincidences and

10% after coincidences (2.5% and 15% for long runs), likely arising from background

events. Further analysis shows that every incident of beta-beta coincidence has the two

coincident betas being triggered in different scintillators, occurring as a pair. The timing

difference between such pairs of this is shown in Figure 5.2. The NaI energy (Figure 5.3)

from individual runs supports the explanation that this effect arises from background

events such as cosmic rays or high energy radioactive decays which pass through both

scintillator paddles. We can expect that further efforts to reduce the noise arising from

cosmic ray detection in the NaI detectors will also influence these rates.

The last check for the coincidence quality is to look at the details of the NaI detector

triggers. Specifically, we can tally the multiplicity during the coincidence routine and

ensure that most events do not trigger multiple NaI detectors. The initial expectation is

that a real event will hit one or two detectors, while cosmic ray events will deposit energy

in more detectors; this would allow us to add an additional cut to improve the signal.

Ideally, there will be few events with high multiplicity. What we see, however, is that there

are a relatively large number of events that trigger more than two NaI channels within the

same coincidence window (See Figure 5.4). Oddly, there seems to be a peak at multiplicity
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Figure 5.2: Timing difference between adjacent β-β events.

Figure 5.3: NaI energies associated with β-β coincidences.
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Figure 5.4: Left: Multiplicity of NaI channels during coincidence for Run 1904.
Right: Same run, but with multiplicities split between halves.

4; this vanishes when the halves are divided which suggests that there are a large number

of events which have a mostly horizontal incidence on the detector stack. This could also

explain the large 2ns beta-beta coincidence rate discussed above. Implementing a cut

which prohibits events triggering both halves of the NaI spectrum is therefore the next

logical step, with a more sophisticated adjacency check to only allow for events in adjacent

NaI detectors to be counted for coincidences being the sensible conclusion. Implementing

this result indeed cuts the incidence of higher multiplicities by a large margin, and results

in the spectrum seen in Figure 5.11.

5.1.4 Lifetime and Background calculation

Once the data for each run have been formatted and the coincidences have been applied,

they are loaded into a script for finding the lifetime. The background is computed either

from the dedicated background run or from the storage period of the long run and

subtracted from the summed coincident data after cuts are applied. The signal count rate

is input into Equation 2.1 to determine the lifetime with error for that run. Assuming that

the background measurements are representative of the background during the counting
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time (which will be demonstrated later), this should provide an accurate measurement of

the lifetime; the lifetime values for each run are shown in Figure 5.5. Averaging these

values gives a storage lifetime of τ = 875.92(67)s.

Figure 5.5: Lifetime values for all usable 2015 runs.

In order to obtain a reliable value for the lifetime, it is necessary to ensure that we are

using an accurate method of background subtraction. For roughly half of the runs, a

dedicated background run accompanied the short and long measurement runs (the set of

these runs is referred to as a triplet), allowing direct subtraction from the normalized

counts at each timing bin. For the other half, the background rate is inferred from the

signal data rather than using a dedicated run. There are three particular methods of

background subtraction that were analyzed in the non-triplet run pairs. The first is the

independent doublets method (ID), in which the data is fit to an exponential with decay

constant τV to determine the signal. For this fit, the background is assumed to have the

sole time dependent component arising from Iodine decays and as such is a constant plus

exponential function. This method assumes uncorrelated backgrounds and is less reliable in

the calculation of short run background level. The second method sums the traces of the

timing spectra from all runs in the same configuration, and is fittingly referred to as the
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trace sums method (TS). Since this method combines multiple independent runs which

often occur over a period of several days, temporal variations in the background are

assumed to either be negligible or to have fluctuations which average out in the sum. The

other noteworthy method is direct subtraction of background data obtained from the

storage period of the long storage runs. The run plan used for the experiment results in

each short run being immediately preceded and immediately followed by a long run.

Hence, a background value can be determined by taking the average of these surrounding

runs, which we call the sandwich method (SW). This allows us to correct the short term

linear drift in the constant background over several hours. The results for the lifetime

calculations performed using each of these methods can be seen in Figure 5.6.

In addition to the different background subtraction methods, there are several possibilities

for cuts on the measured gamma energy spectrum. While an upper bound at around 1550

keV is apparent as a means of cutting cosmic events from the data while preserving the

neutron signal, the lower bound has several possible values. A tight bound around the 1434

keV energy peak (Emin
gamma ≈ 1300keV ) should yield the highest signal-to-noise ratio by

removing lower energy background, but the loss in statistics from cutting out the compton

edge may offset the precision gained over a looser cut. When considering the lower energy

bound, an Emin
gamma = 10keV would leave the near entirety of the signal for the highest

statistics at the cost of signal-to-noise ratio. Finally, the structure of the spectrum shows

features at around 400keV and 800 keV, which can be removed by Emin
gamma ≈ 600keV and

Emin
gamma ≈ 1000keV . The lifetime value computed for each of these energy regions can be

seen in Figures 5.6 and 5.7.

As Figure 5.7 shows, the different methods of background subtraction are generally in

agreement when other parameters are kept fixed, suggesting that future analysis can

equivalently use any of these methods. The energy window variation shows a slight upward
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Figure 5.6: Aggregated results of lifetime analysis study for various background
subtraction methods and coincidence windows. Parenthetical values use an additi-
onal weighting factor on the sandwich measurements for time proximity.

trend as the window tightens, but the lifetime values for each agree within statistics. In

order to investigate whether this apparent trend results from statistical variance or from

physical significance to the lower energy features, it is worth performing more thorough

analysis of the gamma energies, as we will do in the following section. In addition to the

quoted lifetime values from this analysis, we also have measured the systematic effects on

the lifetime value through experimentation, which are reported in Figure 5.8 as 1.2× 10−3.

5.2 NaI Spectrum

5.2.1 Determining the spectrum

We seek to understand the overall NaI spectrum for the sake of extracting the sources of

background from the signal. The data were formatted as above with a coincidence window

of ∆t = 1µs and a timing offset δt = 0.1µs. While the NaI energies could be simply added

up among the good runs from the 2015 data acquisition, we would like to adjust for any

long term gain drifts in the detectors. As such, we would like to track the location of the

known 1434.06 keV gamma peak from the 52V → 52Cr* → 52Cr + γ decay.

This calculation is done by fitting the peak region [1300keV, 1600keV ] to a gaussian and

recording the mean and standard deviation for each run. The result, as can be seen in

Figure 5.9, is that there is a steady upward drift in the peak location across runs, possibly
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Figure 5.7: Top: Lifetime values obtained from representative runs from each back-
ground subtraction method at the various lower energy bounds. Bottom: Variance
among the runs for Sandwich background subtraction method with Elow

γ = 1350

due to ambient temperature changes influencing the NaI gain. We can normalize each

spectrum to these peaks to obtain consistent energies across runs.

From this, we can calibrate the energies of each run to match the vanadium peak to the

theoretical value. By summing the results into a single plot for each type of run, we get a

high statistics spectrum3 for the short and long holding times, as in Figure 5.10.

There are several other features that we can investigate from this spectrum. In particular,

there are three small peaks at the high end of the spectrum that may be useful in matching

the spectra from other background sources. The same analysis from above yields high

stability for these peaks despite the low statistics for each run. We will return to these in

32.1 million total counts for short holding time runs and 1.4 million total counts for long holding time.
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Figure 5.8: Error budget for the 2015 lifetime data

the next subsection.

5.2.2 Comparison to Simulation

We can look at the NaI spectrum in Figure 5.10 and try to visually identify the source of

its features from the most likely sources of background. Noteworthy peaks occur at several

overlapping locations at low energies (E<600keV), the Compton edge at around 1.2 MeV,

at the expected gamma peak at 1.4 MeV, and at the small triple peaks near 5 MeV. We can

compare with the features noted in the simulation (Figure 5.13) and notice that very little

can be seen from the 28Al spectrum (though there is a chance that the 1.7 MeV peak is

unresolvable from the vanadium peak) or the 208Pb spectrum with the current experimental

results, whereas the 128I spectrum lacks any sharp peaks to investigate. Most notable is the

lack of 5 MeV peaks; upon reinvestigation of earlier analysis, it is most likely that these

“peaks” are actually artefacts arising from pileup in each NaI channel (see Figure 5.12),

which occurs at a slightly different place in each detector resulting in the apparent multiple

peaks. This would justify the near perfect consistency of the peak locations between runs.

With the spectra generated from Geant4 simulation that we have in Figure 5.13, we can fit

the experimental data as follows. Let us define the 52V spectrum as V (E), the 128I
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Figure 5.9: Stability of the 1434.06 keV peak from the NaI spectrum. The red line
represents the theoretical peak energy. Some gain drift is visible through the run
cycle.

spectrum as I(E), the 28Al spectrum as A(E), and the data histogram as a probability

function in energy and time as N(E, t). Then, should exist parameters ai such that:

N(E, t) = aV V (E) e
− t
τV + aII (E) e

− t
τI + aAA (E) e

− t
τAl +B (E) (5.2)

where Σai = 1, assuming proper normalization. Due to the names of the prominent

elements, this will henceforth referred to as the VIAL function. In the above equation, we

have allowed for a background B (E) to exist which does not vary in time. Using the

ROOT TH1::Fit() command, we can fix the time at either t = 0 for short runs or

t = Tstorage for long runs. As the constant background is unknown, we shall ignore it for

the current set of fits. By doing this, we obtain the fits present in Figure 5.14.

Notice that neither fit is paticularly good, owing to the qualititative differences noted

previously. At this point, it is worth returning to the discussion of unknown constant

backgrounds. Notice that the long run, which should be dominated by the 128I spectrum, is

monotonically decreasing at high energies contrary to the expectation. Supposing that a
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Figure 5.10: Gamma spectrum from all 2015 lifetime runs. Coincidence window is
set to 1µs.

background exists which can counteract this, we allow B (E) to be nonzero. Since the form

is unknown, we can use the time idependence of B to observe that the difference between

the long and short spectra is:

N (E, tshort)−N (E, tlong) =aV V (E) e−
tshort
τn + aII (E) e

− tshort
τI + aAA (E) e

− tshort
τAl +B (E) +

−aV V (E) e−
tlong
τn + aII (E) e

−
tlong
τI + aAA (E) e

−
tlong
τAl +B (E)

=bV V (E) + bII (E) + bAA (E) (5.3)

where (assuming τi = τn for the vanadium term)

bi = ai

(
e
− tshort

τi − e−
tshort
τi

)−1
(5.4)

From this we can redo the fit on the difference of the two histograms, which yields the result

in Figure 5.15. Notice that the fit is still fairly bad, but that the lack of a compton edge in

the V(E) spectrum is a major culprit for this fitting issue. Furthermore we can investigate
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Figure 5.11: Gamma spectrum from all 2015 lifetime runs, subject to additional
criteria: Coincidence window is set to 100ns, Energy is restricted between 0.5 and
2.5 MeV, the events during the filling time are ignored, and an anticoincidence is
performed between the two NaI stacks.

the Compton edge for additional information on the fit; in particular, we find that the

width of the main peak in N(E) is broader than the peak in V(E) which may indicate a

calibration error which we can verify using information on the Compton edge. Finally,

since the suspected issues with this fitting method are due to the V(E) spectrum, we can

try looking at background data to determine if we can fit the other constituent spectra.

These topics will be discussed in more detail in the remaining subsections of Section 5.2.

5.2.3 Compton edge analysis

Based on the results obtained earlier, we have reason to believe that the compton edge will

be an important component of the analysis. We first should figure out the theoretical
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Figure 5.12: Uncalibrated singles spectrum for high energy events split between
each NaI channel. Note the pileup at the high energies.

Figure 5.13: Spectra of likely decay sources in background, simulated with the full
detector geometry using Geant4. From top left to lower right: 52V, 128I, 28Al, 208Pb.
Energies in MeV. Notable peaks have been indicated where possible.
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Figure 5.14: Fit to constituent spectra of all short runs (Left) and all long runs
(Right).

energy value for the compton edge. To do so, we observe that the energy of the outgoing

photon in a Compton scatter is given by:

1

Ef
=

1

Ei
+

1− cos(θ)

mec2
(5.5)

We are particularly interested in the minimum outgoing energy; that is, the maximum

deposited energy Ef − Ei, which occurs at θ = π. This suggests that the value of the

energy at the compton edge can be given by:

Ec =

(
1− me

me + 2Epeak

)
Epeak (5.6)

Plugging in Epeak = 1434.06 keV and me = 511 keV/c2, we expect a Compton peak to

occur at Ec = 1217.7 keV. While the peak finding routine in the analysis script has not

been yet fully implemented, it can be observed that the peak of the Compton edge is at a

lower energy, closer to 1150 keV. The larger space between peak and Compton edge
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Figure 5.15: Fit to the constituent spectra of the difference between long and short
run spectra.

together with the increased broadness of the peak compared to the theoretical expectation

suggests that this is most likely a result of improper calibration. To fix this, we will need to

implement a multiplier to match the two known values for the peak in the following way.

Since we already calibrated for peak position, we can generate the histogram of event

energies based on that calibration and use a peak finding routine to determine the location

of Eex
c , the energy of the compton peak in the experimental data. Then, each energy

should be shifted according to E ′ = 1434.06−1217.7
|1434.06−Eexc |

(E − 1434.06) + 1434.06, where energies

are assumed to be in keV.

Using the TSpectrum::Search() class in ROOT, the peaks of the background-subtracted

data could be found at Epeak = 1.415 MeV and ECompton = 1.145 MeV as seen in figure

5.16. After adjusting the energies to match the Vanadium peak, the recalibration was
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Figure 5.16: The short spectrum peak is found at 1.415 MeV, and the Compton
edge at 1.145 MeV.

implemented as described above. The recalibrated data will be used in all subsequent plots.

5.2.4 Fit to background

A major issue with the previous VIAL fits is that there appears to be an extra component

in the background from some other source. The leading candidate for this source is the

lead bricks in the detector shielding, which we know to have been irradiated by high-energy

beams in the past. To counter this, we can make use of the extra information that we have

from the dedicated background runs from the 2014-2015 run cycle. The spectra from the

background runs were prepared in a similar way to the signal data and are plotted in

Figure 5.17. Notice that there is an exponential-like shape to the spectra which matches

the extraneous component found in the previous plots.

There are two ways that we could possibly implement the background spectra into the
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Figure 5.17: Spectra from long and short background runs.

VIAL fit. The first is to perform a direct subtraction from the respective triplet runs to

determine an experimental signal plot, and fit that resultant plot to the VIAL function.

The results are shown in Figure 5.18, but noticeably do not converge properly; the Al and I

contributions are both negligible in this fit result, lending doubt to its accuracy. Aside

from computing errors, the main reason why this fit may be so bad is likely to be that the

lowered background causes the Compton edge to contribute more prominently to the data;

the absence of a Compton edge in the V spectrum will cause the VIAL fit to fail.

The second and more robust way of implementing the background spectra is to create an

extended VIAL (eVIAL) function with the uncategorized contribution from the background

added as an additional (potentially time dependent) term auu(x, t) in the parameterization.

The tradeoff in this is that the fourth parameter will complexify the calculation and result

in greatly increased computation times. However, we can begin with a reduced eVIAL

function which forces aAl=0 and performs the fit in the absence of the aluminum. This

term will necessarily need to be added back in for the short run eVIAL fit, but the reduced

fit should demonstrate approximate values to restrict the parameter space to speed up

subsequent calculations. For this run, the resulting fit can be seen to fit extremely well as
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Figure 5.18: Fit to the background-subtracted spectrum from the short run data.
Long run fit is comparably poor.

Figure 5.19: Extended VIAL fits it to constituent spectra of all short runs (Left)
and all long runs (Right).

in Figure 5.19. Repeating this task with the short runs yields a slightly less good but still

reasonable (given the lack of compton edge on the vanadium constituent) fit to the data.

The values of the components of these fits can be found in Table 5.2. In particular, we see

that the iodine component is extremely small, with an upper bound within error showing

as 0.0175% of the total spectrum. This is likely to cause negligible deviation from the

actual lifetime value, but this will be investigated in the later computation of the lifetime.

It is also worth noting that we can see the variation in the contribution from the
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uncategorized backgrounds, which Figure 5.17 indicates should have little to no time

variation outside of Vanadium peak contribution. As a means of testing this, two fits were

prepared for the background functions. The first looked at fitting the short run background

spectrum to an eVIAL function with the contribution from uncategorized background

taken from the long run background spectrum. In doing this, we expect to see the

components present from the V, I, and Al which are lacking in the final measurement. The

resulting fit is displayed in Figure 5.20 and the data are recorded in Table 5.2. The results

particularly show that the deviation from the long background is entirely Vanadium within

error, with a maximum contribution of the difference capped to 0.38% Iodine and 8.6%

Aluminum.4 From this, we can conclude that the main source of time dependent

background comes from the capture of neutrons during the fill, and the contribution from

the background is roughly 25%.

Figure 5.20: Extended VIAL fit to the long run data (corrected). Fit shown in red.

The second study that can be done is to perform a fit on the difference between the short

and long backgrounds. Since the counting time is not varied, the long run backgrounds

would demonstrate a reduction in signal exclusively from the time-dependent components

4These values are given relative to the contribution from sources aside from the miscellaneous background.
The percentage values (not included explicitly in Table 5.2) for these contributions are 96.30±5.77 Vanadium,
3.5× 10−8 ± 0.38 Iodine, and 3.73± 4.86 Aluminum.
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Spectrum Vanadium Iodine Aluminum Misc. BG
Long Run, Al=0 46.75 ± 0.45 1×10−18 ± 0.018 0 53.25 ± 0.34

Short Run 66.42 ± 0.23 5×10−12 ± 0.00012 0 33.576 ± .065
Short BG 24.47 ± 0.73 9×10−9 ± 0.097 0.95 ± 1.23 74.58 ± 1.4
BG Diff. 100 ± 17.2 1×10−11 ± 0.17 4×10−12 ± 0.28 0

Table 5.2: Coefficients (ai) of various fits. All values given as percentages

of the background in comparison to the short run backgrounds. We expect from comparing

the spectra in Figure 5.17 that there should be little by way of time variation between the

backgrounds. The actual fit that we get when fixing aU = 0 is shown in Figure 5.21. This

fit confirms the notion that the time dependence in the background is largely composed of

Vanadium with other contributions constrained to less than a quarter of a percent.

However, we can see that there is a discrepancy in the fit at the peak, which may well

point to the suggestion that the uncategorized background contains a non-vanadium

component at a potentially nontrivial level. It may be necessary to free the aU component

to investigate the relative size of the variation in non-vanadium background.

Figure 5.21: Extended VIAL fit to the difference between the short and long back-
ground spectra. Fit shown in red.
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5.3 Lifetime calculation

5.3.1 Lifetime Extraction Script

We can compute the lifetime rather simply from knowing the number of neutrons in the

trap at time t, N0(t) for two points in time t1 and t2 using:

τ =
t2 − t1

log(N0(t1)
N0(t2)

)
(5.7)

We can take t1 = 0 without loss of generality, and take the change in time to be

t = t2 − t1 = t2. If we presume that each N0 is derived from subtracting the background

from a given measured signal, each of which has an uncertainty which goes as
√
n, then the

uncertainty for the lifetime becomes:

στ =
τ 2

t

√
1 + et/τV

N0(0)
(5.8)

We can then extract the lifetime from the data by specifying a counting period, say 1000s,

and integrating over the counting time for each appropriate time. The energy cuts which

are applied to the data are performed after scaling the energy peak to the theoretical value.

This integral can be used to reconstruct the N0 for that counting time. In principle, the

data can be sent to the VIAL fit routine to extract the signal-to-background ratios and

adjust the measured counts accordingly; otherwise, these ratios may be manually entered

as inputs. With such a counting method, the background subtraction should be carried out

bin-by-bin of the time histogram in order to account for the change in signal of the

decaying components appropriately. A correction term is then applied to correct for any

changes in the storage time t for the long storage runs. Finally, the above equations are

used to determine the lifetime with statistical uncertainty. The result from the VIAL
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fitting suggests that the value arrived at here does not need any additional correction due

to time dependent backgrounds, as the measured background for each run is sufficient to

determine its influence on the measured signal. As such, the results presented in Figure 5.6

can be taken as an accurate calculation of the background subtraction.

5.3.2 Deadtime correction

One area which may require additional correction to the lifetime value is the existence of

sporadic dead time in the code due to pileup in the signal. This is apparent in the data as

the analysis software is set to record a zero energy event in this scenario. One way to gain

insight into this effect and determine the necessary correction is to investigate the impact

of a software deadtime. In the ROOT conversion script, a deadtime is implemented by

performing a check between consecutive events for tnew − told > Tdead prior to filling the

histograms. The lifetime is then calculated according to this incomplete set of data and

assuming the background values determined from the preceding scan. When analyzing the

impact of the deadtime, there is a feature at low deadtime (t<40 ns) as seen in Figure 5.22.

There is no noticeable functional form to the lifetime values as the deadtime approaches

zero at this scale, with the most likely explanation being the recording of random data in

the event of a buffer overflow, as the DAQ system is known to do. Should a non-negligible

fraction of this ‘junk” data persist through the coincidence routine, there will be such

random offsets as shown in the deadtime scan. To remedy this, we set a minimum

deadtime of 40 ns and select a series of deadtime values across the region where the lifetime

is linear. The lifetime at each selected deadtime value is calculated and a linear fit is made

with the y-intercept being taken as the real lifetime value for that measurement. This

process resulted in a shift in lifetime value of 2.1s.
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Figure 5.22: Lifetime value from one triplet as a function of software deadtime.
Above 40 ns, the lifetime result is linear.
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CHAPTER 6

CONCLUSION

The UCNτ experiment presents new innovations in the field of UCN bottling

measurements. The novel open topped design allows for in situ detection to eliminate

systematic errors associated with draining the trap. One feature of maximizing the

precision of measurement for this experiment is an effective and well understood transport

system for the UCN. Analysis of the guide parameters using the Geant4 Monte Carlo

simulation toolkit allowed us to assess the quality of the guides and the efficiency of the

guide system as it was laid out in the first run of the experiment. This simulation further

enabled the testing of new cross assembly designs which showed an order of magnitude

improvement of the trap population resulting from reduced depolarization and improved

phase space mixing. Furthermore, the development of new detectors utilizing boron

capture allowed for extremely low background UCN detectors with a high degree of

flexibility. The data collected from the first lifetime measurement run cycle at the start of

2015 provided an opportunity to explore the measurement technique and possibly produce

a competitive neutron lifetime value.

Analysis of the 2015 data allowed us to investigate the various approaches to extracting the

UCN lifetime. UCN polarization in the trap was demonstrated to be conserved sufficiently

for storage. The background measurement was not sufficiently understood during the data
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taking. While simulation provided several candidates for the background sources, the

background spectrum showed the sole time dependent component arising from erroneously

captured neutrons on the vanadium foil. Consequently, the use of direct background

subtraction using dedicated background measurements sufficed to produce accurate

counting. Measurements of the drift in energy normalization per run as a result of ambient

conditions on the detectors and deadtime arising from signal pileup in the data acquisition

system yielded corrections to the lifetime value. These corrections allowed us to improve

upon the initial vanadium lifetime measurement of 877.9± 6.7stat ± 1.1syst seconds.

Limitations on the cleaning reliability and phase space evolution limit the accuracy of this

measurement as a neutron lifetime.

Following the 2015 measurement, we have implemented many changes to the UCNτ

apparatus for the sake of improving the precision during future measurements. Among the

most significant changes was the replacement of the vanadium detector system. The

delayed measurement of the vanadium decays, which allowed for a long period of

potentially time dependent background, residual activation between runs, long counting

times, and compounding error as a result of fitting algorithms resulted in fundamental

limitations to the accuracy of the vanadium measurement. The new detector system

instead utilizes a modified ZnS detector in which a flat light guide of comparable dimension

to the vanadium foil is coated on either side with boron-coated ZnS films and the light that

is collected from the neutron signal is routed through wavelength shifting fibers to two

PMTs in hardware sum. In addition to the reduced background rate, the immediacy of the

real time detection signal allows for a much more sophisticated measurement of in trap

systematics such as cleaning height and UCN height density.

Another major change was an improvement of the spectral cleaning apparatus. The roles

of the moving cleaner and the stationary large cleaner were combined into a single movable
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large cleaner which had a much higher reliability in cleaning due to the higher proportion

of marginally trapped phase space covered by the cleaner. The improved cleaner in tandem

with the real-time in-situ detection allowed for the measurement of the trap population at

multiple heights in a single fill, yielding accurate measurements of the cleaning reliability

and the effects of phase-space evolution of trapped UCN. The LANSCe facility also

underwent renovations to the UCN source with the resulting UCN production rate much

higher than in the previous runs. This in tandem with the greatly reduced run duration

due to the upgraded detector resulted in a vast improvement of statistics per run time in

the most recent measurement cycle. Finally, a blinding factor was introduced to the data

collection to mitigate any effect of bias on run vetting. This blinding was possible due to

the consistency and trustworthiness of the experimental setup which was developed during

the 2015 measurement run. The unblinding and analysis of this new data set is underway,

producing a neutron lifetime value with a total uncertainty below 1 s.
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APPENDIX A

LIFETIME UNCERTAINTY - NONZERO BACKGROUND

Now suppose that there is some background B(t) such that B(ti) ≡ Bi. In this case, we

must subtract the background to obtain the lifetime:

τ =
t2 − t1

log N1−B1

N2−B2

(A.1)

We can define our signal terms as Si ≡ Ni −Bi, with uncertainty

σSi =
√
σN2

i + σB2
i =
√
Ni +Bi. In this case, we have that:

τ =
t2 − t1
log S1

S2

(A.2)

Since this take an identical form to Equation (1), we can immediately conclude that:
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στ 2 =
1

log
(
S1

S2

)
σt2 +

t2

log
(
S1

S2

) (σS2
1

S2
1

+
σS2

2

S2
2

)
=
τ 2

t2

[
σt2 + τ 2

(
N1 +B1

(N1 −B1)2
+

N2 +B2

(N2 −B2)2

)]
(A.3)

⇒ στ =
τ

t

√
σt2 + τ 2

(
N1 +B1

(N1 −B1)2
+

1

N2 −B2

+
2B2

(N2 −B2)2

)
(A.4)

Again, we can use the fact that the signal should follow an exponential decay, S2 = S1e
−t
τ ,

to simplify this equation as:

στ =
τ

t

√√√√σt2 + τ 2

(
N1 +B1

(N1 −B1)2
+

e
t
τ

(N1 −B1)
+

2B2e
2t
τ

(N1 −B1)2

)

στ =
τ

t

√
σt2 +

τ 2

S2
1

(
(N1 +B1) + S1e

t
τ + 2B2e

2t
τ

)
(A.5)

Let us define D ≡ N1 +B1 to simplify the expression. Suppose the background varies as

B(t) = B1 + B̃(t). We now can differentiate:

∂στ

∂t
=
−τ
t2

√
σt2 +

τ 2

S2
1

(
(N1 +B1) + S1e

t
τ + 2B2e

2t
τ

)
+

+
τ τ

2

S2
1

(
S1

τ
e
t
τ + 4B2

τ
e

2t
τ + 2∂B̃

∂t
e

2t
τ

)
2t

√
σt2 + τ2

S2
1

(
(N1 +B1) + S1e

t
τ + 2B2e

2t
τ

)
=
τ 3
(
−2
((

S1σt
τ

)2
+D + S1e

t
τ + 2B2e

2t
τ

)
+ t

τ

(
S1e

t
τ + 4B2

(
1 + τ

2B2

∂B̃
∂t

)
e

2t
τ

))
2t2S2

1

√
σt2 + τ2

S2
1

(
(N1 +B1) + S1e

t
τ + 2B2e

2t
τ

) (A.6)
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As before, we can take S1σt
τ
� 1. We also define x ≡ t

τ
as before and I ≡ 1 + τ

2B2

∂B̃
∂t

1.

Setting the numerator equal to zero yields the minimum uncertainty:

0 = −2
(
D + S1e

x + 2B2e
2x
)

+ x
(
S1e

x + 4B2Ie
2x
)

(A.7)

⇒ 2B2(2x− 2)e2x + S1(x− 2)ex − 2D = 0 (A.8)

⇒ 2B2(2x− 2)e2x−2 + S1(x− 2)ex−2 − 2D

e2
= 0 (A.9)

This equation is unable to be solved using simple analytical methods, to the best of our

knowledge. However, if we define the backgrounds and the t1 measurements, it is

straightforward to determine a numerical solution.2

A.1 No Background, Revisited

We verify that setting B1 = B2 = 0 yields S1 = D = N1, and hence

N1(x− 2)ex−2 − 2N1

e2
= 0 (A.10)

which is identical to Equation (16). Thus, we recover the background-less result of

t2 = t1 + 2 +W
(

2
e2

)
1For the constant background case, ∂B̃

∂t = 0 and hence I = 1. This generalizes the result with minimal

additional complexity. It is worth noting that we reduce to I ≈ 1 whenever ∂B̃
∂t

∣∣
t2−t1

� 2B2

τ ≈ 0.00227B2,
which is somewhat more general than the constant background case while yielding the same result.

2From an experimental standpoint, this is sufficient for a solution, since it is possible to obtain all the
necessary information for the calculation prior to taking the second measurement, provided sufficiently steady
background (as already assumed).
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A.2 Example solution

Consider a constant background measurement with B1 = B2 = 10 and

(t1, N1) = (200s, 250). In this case, Equation (27) becomes:

20(2x− 2)e2x−2 + 240(x− 2)ex−2 − 520

e2
= 0 (A.11)

from which we calculate x ≈ 1.7193. Hence, the uncertainty is minimized when

t2 = 200 + 1.7193τ ≈ 1713s.

A.3 Low Background

We attempt to seek a simplification of Equation (27) that will allow for an analytical

solution in the case where B2 is small (in some sense) compared to S1. We rearrange terms

such that

((x− 2)S1 + (x− 1)4B2e
x) ex−2 =

2D

e2
(A.12)(

(x− 1)S1

(
1 +

4B2

S1

ex
)
− S1

)
ex−2 =

2D

e2
(A.13)

Now, we consider the
(

1 + 4B2

S1
ex
)

factor.3 If the background is sufficiently small such that,

for the eventual value of x, we have B2 � S1

4
e−x, then Equation (31) becomes:

(x− 2)S1e
x−2 =

2D

e2
(A.14)

3We may run into trouble if we carelessly separate this expression from the rest of the equation; to avoid
this, it is necessary that we only look for solutions such that (x− 2) 6� (x− 1).
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which has the solution

x = 2 +W

(
2(N1 +B1)

e2(N1 −B1)

)
(A.15)

If we also have B1 � N1 we can further conclude:

= 2 +W

(
2

e2

(
N1

N1 −B1

+
B1

S1

))
= 2 +W

(
2

e2

[
1

1− B1

N1

+O
(
B1

S1

)])

= 2 +W

(
2

e2

[
1 +O

(
B1

S1

)])
≈ 2 +W

(
2

e2

)
(A.16)

(A.17)

Which results in Equation (17), the background-less case. We combine Equation (33) with

the previously determined background limit to conclude that we are in an effectively

background-less situation (with regards to lifetime uncertainty) whenever

B2 �
S1

4
e−2.2177 ≈ 0.0272S1 (A.18)
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APPENDIX B

SURFACE MULTILAYER INTERACTIONS OF UCN

When investigating UCN transport, we concern ourselves with the material boundary

interactions of the neutrons with the guide surfaces and other elements of the experimental

apparatus. As a UCN has the potential to interact multiple times with any given surface, it

is important that we have a good understanding of the effective Fermi potential and loss

factor for each surface. One issue that arises when considering these parameters is that

many materials tend to spontaneously form a surface layer by interacting with air, most

commonly one or more oxide layers. The existence of such oxide layers casues an

energy-dependent perturbation of the expected material interaction properties. This applies

equivalently to any instance of consecutive thin layers upon a substrate, and no explicit

distinction between such a case and the oxide layer case will be made in this appendix.

B.1 Infinite Bulk, No Surface Layer(s)

Suppose that the incident neutron encounters a bulk sufficiently thick that the

wavefunction vanishes at +∞. In this case, we can express the potential as an infinite step

function defined as zero for x<0 and V (x) = 2π~2
mN

N(aR − ial) ≡ V − iW elsewhere, where

Na is the complex scattering length density. We can divide the wavefunction on these two
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segments:

Ψ(x, y, z) =


Ψ0(x, y, z) ifx < 0

Ψ1(x, y, z) ifx ≥ 0

(B.1)

By setting the surface normal to be the x-direction, we know that the y and z components

are both plane waves with the appropriate wavenumbers; these will not factor into the

calculations. For each region, the potential is constant, and as such the Schrödinger

equation takes the form:

~2

2m

∂2Ψj

∂x2
+ (E − Vj + iWj)Ψj = 0 (B.2)

This is easily solved for each region to give the wavefunction in terms of exponentials:

Ψ0(x) = eik0x +Re−ik0x (B.3)

Ψ1(x) = Teik1x (B.4)

Where we have defined kj =
√

2m
~2 (E − Vj + iWj) and we have ignored the reflected wave

component in the expression for Ψ1(x). The adjoints to these wavefunctions are easily

found to be identical to the above equations with the substitutions i→ −i and k → k∗.

The boundary (x=0) continuity equations are simple:

1 +R = T (B.5)

ik0(1−R) = ik1T (B.6)
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R =
2k0

k1 + k0
=

2
√
E√

E +
√
E − V1 + iW1

(B.7)

T =
k1 − k0
k1 + k0

=

√
E −

√
E − V1 + iW1√

E +
√
E − V1 + iW1

(B.8)

To obtain the reflection and transmission probabilities, we consider the probability currents

into andout of the boundary region [−ε, ε]. We can generally solve for the probability

current for a plane wave Aeikx with complex k as:

jx(x) =
~

2mi

(
Ψ†
∂Ψ

∂x
−Ψ

∂Ψ†

∂x

)
=

~
m
|A|2<(k)e−2=(k)x (B.9)

We can identify the incoming wave as the normalized exponential term in Ψ0, the reflected

outgoing wave as the R term, and the transmitted outgoing wave as the T term. Then, the

reflection and transmission probabilities pR and pT are easily found as:

pR = lim
ε→0

∣∣∣∣jref (−ε) · x̂jinc(−ε) · x̂

∣∣∣∣ =

∣∣∣∣ |Q|2<(k0)

<(k0)

∣∣∣∣ =
|k0 − k1|2

|k0 + k1|2
(B.10)

pT = lim
ε→0

∣∣∣∣ jtrn(ε) · x̂
jinc(−ε) · x̂

∣∣∣∣ =

∣∣∣∣ |S|2<(k1)

<(k0)

∣∣∣∣ =
4|k0|2

|k0 + k1|2
(B.11)

Note that we always take the square root value with positive real part, and as such we can

ignore the absolute value around the ratio of <(ki)’s. It is easily verified that R+T=1. In

cases in which the bulk has a high absorption probability such as Boron, we assume all

transmitted particles are lost and interpret T as the loss per bounce.

There exists a particular mixture of boron-10 with boron-11 (specifically, 97.08% 10B), for

which the real part of the potential vanishes. In this case, VB ≡ −iW ′ = −37.98i neV.

Letting E/W = K, the reflectivity goes as R =

∣∣∣∣1−√1+i/K

1+
√

1+i/K

∣∣∣∣2, which is a monotonically

97



Figure B.1: General shape of a material boundary potential with a monolayer

decreasing curve that acts as 1−
√

8K for K � 1 and 1/(16K2) for K � 1.

B.2 Single Layer on Substrate

We next consider the previous case with an additional layer of thickness d between the

vacuum and the bulk, where the bulk is treated as an infinite substrate and the monolayer

thickness is small compared to the bulk. We can divide the potential into three regions,

where the vacuum is region 0, the monolayer is region 1, and the substrate is region 2, as in

Figure B.1.

With the regions defined ins this fashion, the wavefunction is expressed as :

Ψ(x, y, z) =


Ψ0(x, y, z) ifx < 0

Ψ1(x, y, z) if0 ≤ x < d

Ψ2(x, y, z) ifx ≥ d

(B.12)

For a particle incident on the surface with an energy Etotal and perpendicular energy

E = Etotal cos(θ), we may construct the wavefunctions taking x as the surface normal
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direction Ψ(x, y, z) = Ψ(x)eikyyeikzz, and subdivide by region:

Ψ0(x)= eik0x +Re−ik0x (B.13)

Ψ0(x)= Aeik1x +Be−ik1x (B.14)

Ψ0(x)= Teik2(x−d) (B.15)

where, as before, kj =
√

2m
~2 (E − Vj + iWj). For regions where E < Vj, kj will be

imaginary, and so for those cases it may be helpful to define βj = −ikj to simplify the

expressions. The incoming wave amplitude has been normalized such that R and T

correspond to reflection and transmission amplitudes as before.

We apply the continuity and smoothness boundary conditions at each point:

Ψ0(0) = Psi1(0) =⇒ 1 +R = A+B (B.16)

Ψ′0(0) = Psi′1(0) =⇒ ik0(1−R) = ik1(A−B) (B.17)

Ψ1(d) = Psi2(d) =⇒ Aeik1d +Be−ik1d = T (B.18)

Ψ′1(d) = Psi′2(d) =⇒ ik1
(
Aeik1d −Be−ik1d

)
= ik2T (B.19)

Solving for the coefficients in the latter two equations in terms of T yields

2A = (1 + k2/k1)Te
−ik1d and 2B = (1− k2/k1)Teik1d , which can be inserted into the

former two equations to yield
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2=(A+B) +
k1
k0

(A−B) (B.20)

=

(
1 +

k1
k0

)
A+

(
1− k1

k0

)
B (B.21)

=

[(
1 +

k2
k0

)
eik1d + e−ik1d

2
+

(
−k1
k0
− k2
k1

)
eik1d − e−ik1d

2

]
T (B.22)

Which can be solved for T as:

T =
2

M cos(k1d) +N sin(k1d)
, (B.23)

where M = 1 + k2/k0 and N = −i(k1/k0 + k2/k1). We can abbreviate this result as

T = 2/D, and conclude the transmission probability as pT = |T |2 = 4/D∗D.

The reflection amplitude is similarly derived from the difference of the x=0 boundary

conditions. We can save some steps by noticing that this is the same as replacing k0 → −k0.

2=(A+B)− k1
k0

(A−B) (B.24)

=

[(
1− k2

k0

)
eik1d + e−ik1d

2
+

(
k1
k0
− k2
k1

)
eik1d − e−ik1d

2

]
T (B.25)

This yields, with the definitions M̃ = 1− k2/k1 and Ñ = i(k1/k0 − k2/k1),

R =
M̃ cos(k1d) + Ñ sin(k1d)

M cos(k1d) +N sin(k1d)
(B.26)

From this, the reflection probability is pR = |R|2 = D̃∗D̃
D∗D

. Note that R and T are both

functions of E, and thus of both Etotal and incidence angle θ. It is trivial to demonstrate
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that this result reduces to the infinite layerless bulk case when d→ 0.

In addition to the reflection and transmission, is is useful to determine the loss factor ηL

for the monolayer. This can be computed by integrating the probability function multiplied

by cross section over region 1[14].

ηL =

∫ d

0

(|NσL|(x)) |Ψ1(x)|2dx (B.27)

In general, NσL may be position dependent; for simplicity, we will assume a uniform

structure to the monolayer. With this assumption, the only position dependence comes

from the wavefunction. We previously solved for Psi1(x), and can introduce

K ≡ k2
k1

=
√

E−V
E−V1 . Note that K is either entirely real or entirely imaginary depending on

UCN energy. If we swap the limits and define x′ = d− x, the integrand becomes:

|Ψ1(x
′)|2= T 2

4

[
(1 +K∗)eik

∗
1x
′
+ (1−K∗)e−ik∗1x′

] [
(1 +K)e−ik1x

′
+ (1−K)eik1x

′
]

(B.28)

=
T 2

4

[
(1 + |K|2)

(
e2=(k1)x

′
+ e−2=(k1)x

′
)

+ (K +K∗)
(
e2=(k1)x

′ − e−2=(k1)x′
)

+

+(1− |K|2)
(
e2i<(k1)x

′
+ e−2i<(k1)x

′
)

+ (K −K∗)
(
e2i<(k1)x

′ − e−2i<(k1)x′
) ]

(B.29)

=
T 2

4

[
(1 + |K|2) cosh(2=(k1)x

′) + 2<(K) sinh(2=(k1)x
′)+

+(1− |K|2) cos(2<(k1)x
′)− 2i=(K) sin(2<(k1)x

′)
]

(B.30)

The reality of k1 and k2 strongly influence the form of this result, wiht multiple terms
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dropping out depending on the energy. This expression is easily integrated to yield the loss:

ηL=
NσLd

|D|2
[
(1 + |K|2)sinh(2=(k1)d)

=(k1)d
+ 2<(K)

cosh(2=(k1)d)− 1

=(k1)d
+

+(1− |K|2)sin(2<(k1)d)

<(k1)d
+ 2=(K)

1− cos(2<(k1)d)

<(k1)d

]
(B.31)

Notice that the cos and cosh terms will vanish whenever k2 is real. It is important to

remember that σL is generally dependent on energy when performing a calculation.

In cases where the bulk has nonzero potential, we can compute the losses from this region

based on our knowledge of Ψ2(x). In the event that E > V , any transmitted particle will

propogate indefinitely through the bulk and in most calculations will be interpreted as

having left the experimental volume; as such the probability of transmission is a

component of the loss probability. Otherwise, if the energy is less than the bulk then we

perform the loss calculation on a decaying exponential:

η2 = NσL

∫ ∞
d

dx
∣∣Te−β2(x−d)∣∣2 =

NσLd

|D|2
2

β2d
. (B.32)

B.3 Example Calculations for Monolayer Case

One way this calculation can be used is in the determination of the absorption of a UCN

by a finite layer of boron, in which region 0 and 2 are both set to be vacuum and region 1

has the Fermi potential of the desired purity of boron-10. An alternate measurement can

be made when region 2 is given the Fermi potential of ZnS to simulate the detector design

outlined in Section 4.2. A subset of the results from the computation are shown in Figure

4.5.
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Another use for this calculation is in the investigation of the effect of a passivation on the

vanadium detector surface. Vanadium passivates by conversion to several species of oxides,

with vanadium(IV) oxide (V O2) being the most common. While other oxides may exist

within the passivation layer, we can perform this calculation in the approximation of a

uniform passivation. In this case, we consider region 2 to be the Vanadium

(V = VF = −8.2neV ) and for the thickness to be functionally infinite for the sake of this

calculation, and region 1 to be the oxide layer with V1 = VF = 98.2 neV. Since E > V is

guaranteed, there are only two distinct energy regimes to be considered, E⊥ ∈ [0, V1) and

E⊥ ∈ (V1,∞). The detection efficiency will therefore have an energy dependent factor

proportional to pT

If E < V 1, then k1 = iβ will be imaginary, and the trigonometric coefficients will be

M = 1 + k2
k0

and N = i(−frack2β + β
k0

. Thus, the transmission probability becomes:

|T−|2 =
4(

1 + k2
k0

)2
cosh2(βd) +

(
k2
β
− β

k0

)2
sinh2(βd)

(B.33)

There is no obvious analytical simplification, but this suffices for a numerical determination

of the transmission.

If E > V1, k is real for all regions, and we have M = 1 + k2/k0 and N =

−i(k2/k1 + k1/k0). This gives a transmission probability of:

|T+|2 =
4(

1 + k2
k0

)2
cos2(k1d) +

(
k2
k1

+ k1
k0

)2
sin2(k1d)

(B.34)

Figure B.2 shows the plots of the transmission probabilities for V O2 as well as several

other monolayers on vanadium. For a sufficiently thin oxide layer, the transmission rises
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Figure B.2: Transmission vs energy for V O2 oxide layer (right) and for several other
types and thicknesses of coatings including VO (left)

quickly with incident energy and remains mostly above 90% absorption for most energies.

Oxide layers thicker than about 5nm have more prominent energy dependence, which

would increase detection efficiency coupling to UCN phase space; however, we do not

expect the natural passivation to be as thick as that. Loss for films at the 5nm level peak

at around 5neV with around 10−5 loss per bounce, which is comparable to or better than

the other material surfaces in the transport guide system; most non-capture UCN are

reflected from the oxide surface. As such, the energy dependence in UCN capture on the

passivated vanadium leads to an energy dependent increase to the absorption time. Given

the results of both simulations and experimental studies, this is not expected to influence

the ability to accurately count the trapped UCN.

B.4 Multilayers

In the event that we must assess the influence of multiple thin layers on a substrate on the

UCN reflection and loss properties, we can benefit from generalizing the calculation into a

multilayer case. We define N regions of thickness dn piecewise as before (See Figure B.3),
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Figure B.3: General shape of a material boundary potential with a multilayer

with region 0 being free space and region N+1 being the material bulk. Each region has a

corresponding kn defined as usual, with a corresponding wavefunction

Ψn(x) = Gneiknx+Hne
−iknx. This gives us 2N boundary conditions which can be solved

for the desired coefficients. Let us denote the boundary positions as zn such that region n

consists of the interval (zn−1, zn). Then each boundary gives two equations:

Gn+1e
ikn+1zn +Hn+1e

−ikn+1zn=Gne
iknzn +Hne

−iknzn (B.35)

Gn+1e
ikn+1zn −Hn+1e

−ikn+1zn=
kn
kn+1

(
Gne

iknzn −Hne
−iknzn

)
(B.36)

We can introduce 2× 1 matrices
(
Gn
Hn

)
and solve the boundary condition equations to get a

recurrence relation: Gn+1

Hn+1

 = Mn

Gn

Hn

 (B.37)

where

Mn =
1

2

(1 + kn
kn+1

)ei(kn−kn+1)zn (1− kn
kn+1

)e−i(kn+kn+1)zn

(1− kn
kn+1

)ei(kn+kn+1)zn (1 + kn
kn+1

)e−i(kn−kn+1)zn

 (B.38)

The product of two or more Mn matrices is important for the transmission and reflection

calculations, as will be clear later in the calculation. We define the product of the first n
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matrices as:

Mn = Mn ·Mn−1 · · ·M0 =
1

2

An Bn

Cn Dn

 (B.39)

It is wort noting that the determinant of each boundary matrix is det(Mn) = kn/kn+1, and

therefore det(Mn) = k0/kn+1.

It can be shown inductively that the general form of the matrix components of Mn are as

follows. Suppose N = 1, 2, . . . ,m and S ⊂ N is any ordered subset of indices
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(i < j =⇒ si < sj) of N. Recalling that dn = zn − zn−1, the components are found as:

An =ei(k0z0−kn+1zn)

bn/2c∑
m=0

[ ∑
|S|=2m

∏
sj∈S

k(−1)
j+1

sj
+

k0
kn+1

∏
sj∈S

k(−1)
j

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)+

+
∑

|S|=2m+1

k0 ∏
sj∈S

k(−1)
j

sj
+

1

kn+1

∏
sj∈S

k(−1)
j+1

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)

]
(B.40)

Bn =e−i(k0z0+kn+1zn)

bn/2c∑
m=0

[ ∑
|S|=2m

∏
sj∈S

k(−1)
j+1

sj
− k0
kn+1

∏
sj∈S

k(−1)
j

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)+

+
∑

|S|=2m+1

−k0 ∏
sj∈S

k(−1)
j

sj
+

1

kn+1

∏
sj∈S

k(−1)
j+1

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)

]
(B.41)

Cn =ei(k0z0+kn+1zn)

bn/2c∑
m=0

[ ∑
|S|=2m

∏
sj∈S

k(−1)
j+1

sj
− k0
kn+1

∏
sj∈S

k(−1)
j

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)+

+
∑

|S|=2m+1

k0 ∏
sj∈S

k(−1)
j

sj
− 1

kn+1

∏
sj∈S

k(−1)
j+1

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)

]
(B.42)

Dn =e−i(k0z0−kn+1zn)

bn/2c∑
m=0

[ ∑
|S|=2m

∏
sj∈S

k(−1)
j+1

sj
+

k0
kn+1

∏
sj∈S

k(−1)
j

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)+

+
∑

|S|=2m+1

−k0 ∏
sj∈S

k(−1)
j

sj
− 1

kn+1

∏
sj∈S

k(−1)
j+1

sj

∏
s∈S

i sin(ksds)
∏
c/∈S

cos(kcdc)

]
(B.43)

It is possible that these expressions may be further simplified; however, this sufficiently

provides a closed form for any n > 0. It is worth mentioning that the case where n = N ,

the boundary conditions are such that Hn+1 = 0 (that is, there is no backwards

propagating wave from +∞). As a result, we may freely neglect the exponential factor in

this final case. To verify these forms, we consider the calculation of the first boundary

matrix M0 = M0. Substituting n=0 into the above formulae, all products are empty
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products and no set S exists with odd size. In this case, the values returned are:

A0= ei(k0z0−k1z0)
(

1 +
k0
k1

)
B0= e−i(k0z0+k1z0)

(
1− k0

k1

)
C0= ei(k0z0+k1z0)

(
1− k0

k1

)
D0= e−i(k0z0−k1z0)

(
1 +

k0
k1

)
(B.44)

which is exactly the matrix derived in Equation B.38.

Now that we have derived a closed expression for the boundary transfer matrices, we can

easily relate any given coefficient matrix with that of free space:

Gn+1

Hn+1

 = Mn

G0

H0

 = Mn

1

R

 (B.45)

In particular, we can write the equation for the bulk coefficients in order to determine T:

GN+1

HN+1

 =

T
0

 = MN

1

R

 (B.46)

Multiplying out the matrix on the right, we have:

T
0

 =
1

2

AN +BNR

CN +DNR

 (B.47)
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which yields:

T =
2k0

kN+1DN

(B.48)

R =
−CN
DN

(B.49)

The loss can also be computed using the expressions for the intermediate coefficients.

Using Equation B.27, we have for each region:

ηn =Nσ

∫ zn

zn−1

(
G∗ne

−ik∗nx +H∗ne
ik∗nx
) (
Gne

−iknx +Hne
−iknx

)
dx

=Nσ

∫ zn

zn−1
dx
(
|Gn|2e−2=(kn)x + |Hn|2e2=(kn)x + 2<

[
G∗nHne

−2i<(kn)x
])

=Nσ

((
|Gn|2e−=(kn)(zn+zn+1) + |Hn|2e2=(kn)(zn+zn+1)

) sinh(=(kn)dn)

=(kn)
+

+<(H∗nGn)
sin(2<(kn)zn)− sin(2<(kn)zn−1)

<(kn)
+

+=(H∗nGn)
cos(2<(kn)zn)− cos(2<(kn)zn−1)

<(kn)

)
(B.50)

The loss is then just the sum over the loss for each region.

B.5 Multilayer Example - Passivated Copper

Much of the transport guide system utilizes copper surfaces, which passivate into a double

oxide layer consisting of a 2.0 nm inner layer of Cu2O (VF = 139.6 neV) and a 1.3 nm

outer layer of CuO (VF = 168.3 neV). It is possible to compute the UCN interaction

properties analytically, however, the calculation is lengthy and will be omitted in favor of

presenting the results directly. Based on this model of multilayer interaction, we compute

energy dependent reflection and loss curves, seen in Figure ??. The energy dependence of
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Figure B.4: Reflection and loss per bounce of UCN from passivated copper as a
function of incident energy. In the LPB plot, the blue curve represents only the
UCN lost in the oxide layer while the green curve includes loss by transmission into
the substrate.

the loss per bounce is of particualr note given its strong dependence on energy, particularly

at energies between 140 and 170 neV, the Fermi potentials of the oxide layers. These

results can be applied to the Geant4 calculation of wall interactions to determine the effect

of passivation on transport efficiency.
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