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Nathan Callahan

MEASUREMENT OF THE NEUTRON LIFETIME USING TRAPPED ULTRACOLD

NEUTRONS

The neutron lifetime is of interest in cosmology and searches for beyond the Standard Model

physics. Measurements in the past 2 decades have disagreed significantly. Measurements using

trapped ultracold neutrons (UCN) have been recently re-analyzed with new assessments of

systematic effects, moving the average by 6σ. Additionally, a second type of lifetime experiment

measuring decay-in-flight protons in a cold neutron beam disagrees with bottle measurements by

4σ. This tension motivates UCNτ , a bottle lifetime experiment that is not susceptible to the

large corrections of previous bottle experiments. UCNτ uses a magnetic field from a Halbach

array to levitate UCN of energy < 50 neV. These neutrons are counted using a prompt in situ

detector which is capable of gathering spectral information. In this work, analysis of a 0.7 s

statistical uncertainty dataset is presented. The effects of pileup, deadtime, and backgrounds

were investigated. Limits are placed on shifts due to depolarization during holding,

position-dependent backgrounds, phase space evolution, and deadtime. A Monte Carlo model is

developed which reproduces the short holding time dataset. This simulation uses 5 parameters to

describe the spectrum of UCN in the experiment and the detector. The model is used to estimate

the size of shifts due to uncleaned UCN and UCN heated by microphonic vibrations.

Additionally, novel superconducting trap geometries are studied via Lyapunov exponents. A trap

which is almost completely chaotic is sought, which has guaranteed cleaning behavior due to the

ergodic nature of chaotic orbits. Using these methods, UCNτ has made a measurement of

τn=877.9 s±0.68 s(stat.)±0.3 s(sys.).

Chen-Yu Liu, Ph.D. (Chair)
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CHAPTER 1

THE NEUTRON, BIG BANG NUCLEOSYNTHESIS, AND THE

STANDARD MODEL

1.1 ABOUT THE NEUTRON

The neutron and its decay is a simple but powerful laboratory to study many scales of physics

from the particle physics to cosmology. Neutron β decay gives access to two important parameters

in the Standard Model: Vud (which describes quark mixing via the CabibboKobayashiMaskawa

matrix) and λ (or gA/gV ; gV = 1, the zero-momentum axial vector form factor over the vector

form factor which describes the interior of the neutron). Studying the neutron lifetime and decay

correlations allows measurements of these parameters and verification of the Standard Model.

These parameters can also be used to predict the primordial helium abundance after the Big Bang.

1.2 HISTORY OF THE NEUTRON AND ITS LIFETIME

The neutron was discovered by Chadwick in 1932 [2]. Chadwick discovered that a new type of

highly penetrating radiation (neutrons) were produced in certain nuclear reactions. Initially, it was

thought that the neutron could be a bound state of a proton and an electron. However, Chadwick

further determined that the neutron mass was greater than the proton mass, which opened the

possibility for it to decay. The first observation of the neutron lifetime was by Snell et. al. in

1948 [3] by observing proton decay-in-flight in a neutron beam. They measured τn ∼1800 s (about

1000s too long). This began a long tradition of continually more precise τn measurements.
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Figure 1.1: Lifetime Measurements through the ages.

Historically, two major methods have been used to measure the neutron lifetime, colloquially

known as beam methods and bottle methods. Figure 1.1 shows the history of neutron lifetime

measurements by year from 1990. Historically, the earlier measurements have tended towards

higher lifetimes and have, through the years, gradually decreased.

There have been several significant changes in the average value calculated by the Particle Data

Group (PDG). The most recent was a shift from τn=885.7±0.8 s to 880.1±0.1 s between 2010 and

2012 (approximately 6σ) due to reassessment of the large corrections in bottle measurements [4].

The modern disagreement between beam (888.0±2 s) and bottle (878.1±0.5 s) measurements

is 4.4σ. The bottle measurements (weighted sum of bottle measurements used in the PDG value

along with the measurement presented here) are on average lower than beam experiments (Yue’s

and Byrne’s), which is the direction expected if there were unaccounted for loss mechanisms in

bottle lifetime measurements.

The two different classes of experiments are also fundamentally different. Bottle experiments

are disappearance experiments, where the deficit of neutrons is measured after storing samples for

2



differing time intervals. Beam experiments measure the appearance of protons in the beam, and

are therefore only sensitive to the branching ratio to protons. In principle, a consistent and well-

measured difference between the two experiment types could point to either a missing systematic

effect, or new physics. The goal of this work is to study a bottle-type experiment and assess the

systematic effects present.

1.3 BOTTLE MEASUREMENTS

Historically, bottle measurements were made using material bottles, where ultracold neutrons

(UCN) are stored in a bottle and contained by interacting with the walls via the strong force [5].

The potential is on the order of 100 neV, so neutrons with low enough energy can live in the

bottle for long periods of time. With careful bottle construction, the loss lifetime on the walls can

exceed the β decay lifetime. However, the loss is energy and temperature dependent, leading to

corrections to the measured trap lifetime.

A prototypical bottle experiment is given in Serebrov et. al. [5]. UCN are loaded into a trap via

a neutron guide. The trap is rotated so that neutrons can enter via the open top. After saturation

density is reached in the trap, the trap is rotated so that its open top is higher than the bottom

and UCN can be trapped by the walls and gravity. High-energy UCN are allowed to escape and

the UCN are then stored for varying holding times. The trap can be again rotated to be emptied

into a detector below the trap that is obscured initially by a valve.

The lifetime in the trap can be measured using the ratio of UCN at 2 different holding times:

τ = ∆t/log(Ns/Nl) where ∆t is the time difference between 2 population measurements, Ns is

the number of UCN counted after a short holding time, and Nl is the number of UCN counted

after a long holding time. A distinction is made between τ and τn. The former is the trap

lifetime τ−1 = τ−1
n + τ−1

loss and the latter is the free neutron lifetime. If the source is sufficiently

stable, the ratio will cancel out the efficiency of counting and initial population sizes making bottle

experiments relative measurements. Deviations in the flux of the neutron source can be accounted

3



Author σstat. [s] ∆τsys. [s] Extrapolation [s] Method

Arzumanov 2015 [6] 0.64 3.6 40-280 Bottle

Steyerl 2012 [7] 1.4 ∼7 >200 s Bottle

Pichlmaier 2010 [8] 1.3 1 110-300 Bottle

Serebrov 2005 [5] 0.7 0.4 10-20 Bottle

Yue 2013 [9] 1.2 1 2-15 Beam

Byrne 1996 [10] 3 5.9 - Beam

Table 1.1: A selection of neutron Lifetime experiments with systematic corrections and approximate

extrapolation scales

for by normalizing to the flux for Ns and Nl.

A key feature of material bottle traps is the ability to vary the collision rate, γ. The neutron

lifetime can be measured by measuring the trap lifetime as a function of γ and extrapolating to zero

collision rate. The Serebrov experiment used different sized traps as well as spectral preparation

to vary the collision rate. By inserting a different trap geometry, the surface area to volume ratio

is changed and therefore the total collision rate of UCN. Additionally, UCN are emptied from the

top of the vessel by rotation. This allows spectral information to be extracted from the counts,

so τ can also be measured at different UCN energies. The final value of τn is the extrapolation

(whether via geometry or spectrum or both) to zero collision rate.

The trap lifetimes measured in the Serebrov experiment were between ∼874-863 s, meaning an

extrapolation of ∼10s from the mean trap lifetime. Historically, this is a small correction; some

bottle experiments had extrapolations higher by an order of magnitude. The extrapolation size

and systematic corrections for the collection of τn results appearing in the PDG can be found in

Table 1.1. These are rough estimates of the sizes based on reported numbers.

The dominating systematic uncertainty is the extrapolation down to zero collision rate using

calculated values of γ for the 2 traps. γ was calculated by assuming a spatial density and energy

spectrum in the trap and integrating the flux onto the walls [11]. The uncertainty in the ex-

4



trapolation was estimated via simulations by doing the extrapolation on similar geometries to the

experiment and measuring the ability of the extrapolation to reproduce the Monte Carlo lifetime

τn,MC. Their estimate for the accuracy of the extrapolation was 0.236 s. Additionally, the loss

probability per bounce is energy dependent, which contributes about half as much uncertainty.

1.4 BEAM MEASUREMENTS

Beam measurements use neutron beams to measure τn. A prototypical beam experiment is given

in Nico et. al. [12]. In this experiment, a cold neutron beam passes through a proton trap. Some

fraction of cold neutrons decay in flight into protons and are trapped. The neutron beam then

passes through a flux monitor which measures the total number of neutrons per unit time. After

a collection period, protons are allowed to exit the trap and are accelerated into a proton detector

where they are counted. By comparing the proton detection rate to the neutron rate, the lifetime

is obtained via τn ∼ Ṅn
Ṅp

.

One problematic element of the experiment is that the edge of the trap is not well defined. To

avoid this problem, the trap is made of several segments. By doing the experiment with differing

number of segments, the proton rate as a function of trap length can be calculated instead. The

change in trap length is then measured instead of the fiducial volume of the trap itself.

The quantities measured are also absolute: one needs to measure the neutrons with a known

efficiency and the protons with a known efficiency. Large systematic uncertainties can come from

calibration of the neutron and proton detectors. The initial measurements by Nico et. al. (refined

in Yue [9]) had corrections of several seconds in positive and negative directions and a systematic

uncertainty of 2.7 s due to the effects of beam shape on the neutron detector and the composition

of the detector. An extrapolation of 2-15 s also has to be made for backscattering on the proton

detector [12].

5



1.5 MAGNETIC BOTTLES

Magnetic bottles were initially proposed by Vladimisrkii [13]. UCN also interact with magnetic

fields and if their spin is properly aligned, will be repelled by high fields (so-called ”Low Field

Seekers”). Due to their low energy, UCN can adiabatically follow magnetic fields and maintain

their polarization in the local field direction. Additionally, a neutron gains roughly one neV of

energy per cm in Earth’s gravitational field, allowing low-energy UCN to be totally confined inside

a magnetic trap. Magnetic bottles allow neutrons to be stored without material losses, eliminating

the need for extrapolation to zero collision rate.

The use of magnetic fields to trap UCN eliminates the wall loss, but also typically adds other

systematic effects that need to be studied carefully. In magnetic bottles, it is possible for the

UCN to depolarize during storage. A depolarized UCN will be lost into the magnetic walls as it is

attracted to high fields. Typically, magnetic bottles are open on top; high-energy UCN can escape

if not eliminated before storage. Elimination of high-energy UCN is difficult because wall reflections

do not scatter diffusely into phase space unlike material bottles where there are substantial diffuse

reflections. This causes slow equilibration in phase space and therefore slow removal of high-energy

UCN. Finally, if UCN gain any energy during storage they can also leave the trap, lowering the

lifetime.

A magnetic bottle experiment has already been conducted [14]. This experiment used cylindri-

cally symmetric trap where neutrons were loaded from above via a cylindrical lift that eliminated

untrappable neutrons during the filling procedure. The lift adiabatically lowers a neutron popula-

tion into the trap for storage. This experiment measured τn=878.3 s±1.6 s(stat.)±1.0 s(sys.), in

good agreement with previous bottle experiments. This experiment needed a correction of 3.7 s in

order to correct for losses incurred due to spin flips during storage.
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1.6 τn AND THE PRIMORDIAL HELIUM ABUNDANCE

The aim of Big Bang Nucleosynthesis theory (BBN) is to predict the conditions of the early universe

using the Standard Model and statistical mechanics. BBN theory can predict the primordial helium

abundance, Yp. Yp can be predicted in BBN theory as well as measured experimentally [15]. The

neutron lifetime, τn is used several places in the standard BBN model and the uncertainty in the

Yp prediction is dominated by the uncertainty in τn. A sketch of the BBN theory is reproduced

below to show schematically where τn is important and how its uncertainty affects Yp.

The beginning of the universe was hot and dense. Eventually, protons and neutrons formed

out of the primordial soup. Their numbers were kept in equilibrium by several nuclear reactions

(n + e+ ↔ p + ve, n + ve ↔ p + e−, n → p + e− + ve). The latter is neutron β decay and has a

cross-section ∝ 1/τn. The other reactions are also proportional to 1/τn. Eventually, the universe

will reach a temperature where the rate of the first 2 interactions will fall to a point where only one

interaction is expected in the momentary age of the universe. This is the freezeout temperature,

given in terms of the effective number of neutrino degrees of freedom, Nb, and the neutron lifetime

τn by [15]

Tf ∝ (22 + 7Nv)
1/6τ1/3

n . (1.1)

Neutrons and protons were, until this temperature is reached, in equilibrium. However, after

this period the ratio of neutrons to protons is frozen, and only the last reaction (neutron decay)

plays an important role. Initially after Tf is reached, the universe is too hot to form nuclei so the

neutrons present will β decay freely. Eventually after a time td, nuclei are able to form and almost

all neutrons are trapped in helium-4 atoms where they are stable. This gives the primordial helium

abundance as

Yp ∼
2e−td/τn

1 + e∆m/kTf
, (1.2)
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where td is the time where neutrons can freely decay before capture, ∆m is the mass difference

between the free neutron and free proton, and k is the Boltzmann constant.

This quick calculation gives Yp ∼ 0.22 which compares to Yp = 0.24709 ± 0.00017 in state-of-

the-art calculations by Pitrou et. al. [16].

The sensitivity of Yp to the neutron lifetime is found to be ∼ +0.72∆τn/τn [17]. If the neutron

lifetime were to shift by ∼1%, it would shift the prediction of Yp by 5σ. The beam-bottle discrep-

ancy stands at roughly 1%, so making accurate predictions of Yp needs accurate measurements of

τn.

Observational studies of Yp can be made by extrapolating the helium abundance in low-

metallicity H II regions down to zero metallicity [18]. H II regions are diffuse matter largely

composed of hydrogen. Pitrou et. al. adopt a value of Yp = 0.2449 ± 0.0040 [16] based on a

regression of 16 objects including infrared lines [19]. If the beam lifetime is used in the results from

Pitrou et. al. (via the ∼ +0.72∆τn/τn sensitivity), the predicted Yp is approximately 1σ away

from the observational abundances.

1.7 THE STANDARD MODEL AND NEUTRON β DECAY

The free neutron in the Standard Model is subject to β decay via the weak force. Including the

effects of radiative corrections, τn is given by [20]

τn =
4908.7(1.9)

|Vud|2(1 + 3g2
A)
, (1.3)

which involves the CKM matrix element Vud, and the zero-momentum axial vector form factor gA.

The CKM matrix describes quark flavor mixing in the Standard Model.

Measuring Vud is then possible by measuring both τn and gA. The latter can come from

other β decay observables, for example A, the correlation between the neutron spin and electron

momentum. Vud is of interest in searches of physics beyond the Standard Model (BSM); combined

with Vus and Vub it measures unitarity of the CKM matrix
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∆CKM = |Vud|2 + |Vus|2 + |Vub|2 − 1, (1.4)

which is 0 in the Standard Model. ∆CKM is sensitive to BSM left and right-handed couplings [21],

which can be seen in the effective field theory value for Vud when considering free neutron decay:

|V̄ud|2|n→pev̄ =|Vud|2
[

1 + 2Re(εL + εR − εµ)

+
1

1 + 3λ2

(
gSRe εS − 12λgTRe εT

)
×
(
I1(x0)

I0(x0)
− 6λ2

1 + 3λ2
c

)]
,

(1.5)

where εα is the effective coupling beyond the standard model for α = L,R, S, P, T for left-handed,

right-handed, scalar, pseudo-scalar, and tensor interactions. Similarly, gα for α = S, P, T, V,A is

the zero-momentum form factor for the previously enumerated, vector, or axial vector interactions.

I0(x0) and Ii(x0) are phase space integrals. The constant c depends on how λ (= gA/gV ) is

extracted (for example via A).

Current precision determinations of ∆CKM constrain new physics at around 11 TeV energy

scale. Low-energy searches for εL + εR + εµ are competitive with high-energy searches for this

signal.

Measurements of Vud using τn and λ are currently not as precise as 0+ → 0+ nuclear β decay

measurements [22]. However, both are subject to similar radiative corrections as in Equation

1.3. Additionally, extraction of Vud from superallowed β decay experiments are subject to nuclear

structure uncertainties [20]. This makes measuring τn and λ an attractive way to provide a second

measurement of Vud. In order to become competitive, τn needs to be measured to ∼0.3 s precision

and δA/A to about 0.1% precision [21].
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CHAPTER 2

UCN INTERACTIONS

2.1 UCN OVERVIEW

Ultracold neutrons (UCN) are neutrons with energies below a few hundred nanoelectronvolts (neV).

UCN interact with matter via the strong force (giving rise to material potentials), with magnetic

fields and gravitationally. Additionally, UCN undergo β decay via the weak force. In an interesting

quirk of nature, these interactions all have similar magnitudes of U ∼ EUCN. The material inter-

action with bulk matter provides a potential of a few hundred neV. The potential of a UCN in a

magnetic field in the adiabatic approximation is 60 neV per Tesla. A UCN in Earth’s gravitational

field loses about an neV per cm of height. Finally, the β decay lifetime is around 15 minutes, allow-

ing storage of neutrons for tens of minutes and for measurements of their decays. This confluence

of interactions allows UCN to be easily trapped inside material bottles or magnetic bottles, and to

be guided from sources of UCN to experiments. 1

The difficulty with UCN then becomes detection: they are uncharged so the best way to detect

them is to destroy them via absorption and subsequent production of charged particles. UCN

can only be tracked in detail by integrating their equations of motion in simulations and the only

experimental information available is their time and place of death.

1The interested reader is guided to the book by Golub, Richardson and Lamoreaux, upon which this section and

the next are based [23]. That text lays out the formulas I present here and gives more detail of their derivation, more

examples, and a description of UCN experiments conducted at the time. I will give here only relevant results used in

later chapters.
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2.2 UCN INTERACTION WITH MATTER

Neutrons can interact with matter via the strong force. The scattering of a neutron on a single

nucleus can be written using an effective potential (the Fermi potential):

UF =
2π~2a

µ
δ(3)(η), (2.1)

where a is the scattering length of the nucleus, µ is the reduced mass of the neutron nucleus system,

and η = r−rn. Values of a are usually experimentally determined and can be positive or negative.

When dealing with an ensemble of nuclei where the nuclei can be assumed to not recoil instead

of a single nucleus, the total effective potential can be written as

V (r) =
2π~2

m

∑
i

aiδ(r − ri). (2.2)

Assuming an incident wave and treating multiple scattering gives an effective potential in the

Schrödinger equation of

V (r) =
2π~2

m
[an(r)], (2.3)

where a is the bound coherent scattering length and n is the number density of nuclei.

Equation 2.3 gives a simple interaction of UCN with a wall; if a UCN comes from the vacuum

and impinges on a material it will see a step function potential. The magnitude of this potential is

a few hundred neV or less (and even negative for some materials). The interaction is easily treated

by assuming a plane wave and by demanding continuity of the wavefunction and its derivative.

The amplitude of the reflected wave from the material boundary is

R =
k − k′
k + k′

, (2.4)

where k, k′ are the wavenumber before and after the potential. R is 1 in the case of a real potential

and E⊥ < V .

In the case of absorption where the reverse process is not likely, Equation 2.3 can be replaced

with a complex potential where the imaginary part describes the absorption in the material. Equa-
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tion 2.4 will describe the reflection amplitude, taking into account complex k and U :

U = V + iW = V + i
~
2

∑
i

Niσ
(i)
l v, (2.5)

where Ni is the number density of the absorber, σl is the loss cross section and v is the velocity

of the neutron. For nuclear absorption, the loss probability is proportional to 1/v and there is no

energy dependence of the imaginary part of the potential.

This model can be amended for more complex surfaces such as thin films easily. In this case, the

continuity of the wavefunction is imposed across all of the boundaries, giving a reflection amplitude

R from the surface. The reflection amplitude is

R =
−M̄21

M̄22
, (2.6)

where M̄ = M̄N . . . M̄2M̄1 and

M̄n =
1

2

(1 + γn)ei(kn−1−kn)zn (1− γn)e−i(kn−1+kn)zn

(1− γn)ei(kn−1+kn)zn (1 + γn)e−i(kn−1−kn)zn

 , (2.7)

where γ = kn−1/kn, and zn is the position of the nth barrier.

If the real potential is known and the loss cross section is also known, the reflection probability

is then easily obtained.

2.3 UCN INTERACTION WITH MAGNETIC FIELDS

Neutrons are spin 1/2 particles and see a potential from magnetic fields of

V = −µ ·B, (2.8)

where µ is the neutron’s magnetic moment.

For UCN, their motion is so slow that the precession frequency is much faster than the rate of

change of the B field. In this adiabatic condition, the spin tends to keep aligned (or anti-aligned)

with the local field and the interaction then becomes

V = ±µ|B|, (2.9)
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where the + or − is given by anti-alignment or alignment of the field and the neutron’s spin.

While UCN tend to remain polarized with or against the local field, this is not always the

case. Special field configurations can induce UCN to flip their polarization (between attraction

towards high fields to repulsion towards high fields), or lose their polarization during normal storage

conditions. The former is useful for conditioning of UCN and the latter is a potential source of

loss in magnetic traps.
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CHAPTER 3

SOURCES OF UCN

3.1 SOURCES OF UCN

The spectral density of neutrons in thermal equilibrium in a moderator will be given by a Maxwell

distribution:

ρ(v)dv =
2Φ0

α

v2

α2
exp(−v2/α2)

dv

α
, (3.1)

where Φ0 is the input flux to the moderator, α =
√

2kBT/m, and v is the velocity.

The density in phase space peaks at low values of v and declines as v gets higher. As a

consequence of Louiville’s Theorem, in a conservative potential the phase space density for a group

of particles cannot be increased. Therefore, the concentration of UCN cannot be increased by

raising an ensemble of neutrons in height or by reflections from moving objects. In equilibrium,

the only way to increase the density of low energy neutrons is to decrease temperature.

Loss mechanisms can affect extraction as well. Neutrons exiting a material will gain energy,

and there are loss processes inside the moderator which affect the extraction efficiency of UCN. In

these cases, it can be more efficient to extract a higher energy group of neutrons from a moderator

and cool them in a controlled way into an experiment [23].

Gains in phase space density can be made if the neutrons are not in thermal equilibrium with

the moderator. In this case, the density can be enhanced above thermal equilibrium density. Take,

for example, a 2-level system with ground state EUCN and an excited state EUCN + ∆. In this

system, neutrons of energy EUCN +∆ can lose ∆ in energy and become UCN, or UCN can interact
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and gain ∆ in energy and leave the UCN range. Using the principle of detailed balance, the

up-scattering (leaving UCN energies) cross section is given by

σ(EUCN → EUCN + ∆) =
EUCN + ∆

EUCN
exp(−∆/kBT )σ(EUCN + ∆→ EUCN). (3.2)

If the down-scattering cross section does not depend on temperature, then the upscattering

cross-section will be suppressed exponentially with lowering temperature. The rate of UCN pro-

duction will be higher than the rate of UCN loss and the saturation density will be increased

significantly compared to steady-state moderation only.

Deuterium can be used as a superthermal source [24]. In the case of deuterium, the system has

more than 2 levels, but the same idea that the down-scattering production rate can be enhanced

at low temperatures applies. The production rate can be calculated with knowledge of the phonon

spectrum of deuterium for example in [25].

The lifetime in deuterium is relatively short (a few hundred ms), limiting the saturation density

at constant input flux. However, if the input flux is pulsed at higher intensities and lower duty

cycles, this can be mitigated [26]. In such a source, UCN can are produced from deuterium

during an intense beam pulse. These UCN are then sent to the experimental volume where the

lifetime is significantly longer than in the deuterium. During periods where no UCN are produced,

the deuterium is closed off from the experiment; the UCN now are lost with the lifetime of the

experiment and not the deuterium. Pokotilovski estimated that a source built this way could see

an order of magnitude or more improvement over UCN sources that were currently in operation.

3.2 LOS ALAMOS NEUTRON SCIENCE CENTER UCN SOURCE

The ultracold neutron Source currently installed at the Los Alamos Neutron Science Center (LAN-

SCE) is a superthermal solid deuterium source using spallation neutrons. Data taken in the

2016-2017 run cycle uses the most recent source upgrade [27]. Data taken in the 2015-2016 run

cycle uses a previous source iteration [28]. Spallation neutrons are produced from an 800 MeV
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pulsed proton beam at ∼9 µA average current impinging on a tungsten target. These neutrons

are moderated by a polyethylene moderator at ∼45 K. Cooled neutrons then interact with a solid

deuterium crystal of about ∼1.5 L in volume to create UCN.

During a beam pulse (∼1 s), UCN are guided out of the source past a butterfly valve. After the

proton pulse is turned off for ∼10 s, the butterfly valve is closed and the UCN only interact with

the guides out of the source. The guide system consists of a vertical extraction guide of height 1 m

coated in 58Ni, which has a material potential of 335 neV. UCN are then guided horizontally out

of the biological shield via a 6 m guide coated with Nickel Phosphorus with a material potential of

213 neV [29]. Neutrons are then passed through a gate valve (GV) which can separate the source

from the downstream experiments.

UCN are then guided through a pre-polarizing magnet (PPM). The PPM is a 6 T supercon-

ducting magnet inline with the beam. UCN which are in a high-field seeking spin state will be

accelerated through the magnetic field and are typically passed through a foil that separates the

source vacuum from the experimental vacuum. UCN in a low-field seeking spin state do not have

enough energy to penetrate the 6 T magnetic field so do not pass into the experimental volume.

The upgraded UCN source was capable of producing 39 UCN/cc in a prototype cell coupled

after the polarizing magnet. Densities in the Los Alamos UCN lifetime experiment are significantly

reduced from this (approximately 0.05 UCN/cc inside the trap) due to spectral conditioning and

additional guiding of UCN.
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CHAPTER 4

HARDWARE OVERVIEW

UCNτ is a neutron lifetime experiment using magnetically and gravitationally trapped ultracold

neutrons. A schematic drawing of the UCNτ apparatus is given in Figure 4.1.

UCN exit the biological shield in a horizontal guide coming from the source. UCN can interact

with several pinhole detectors for monitoring. During the 2016-2017 run cycle there were 3 such

monitors: the first-generation 10B coated ZnS:Ag UCN monitor (called the old monitor or OL), and

2 paired 10B coated ZnS:Ag monitors. The characteristics of 10B coated ZnS:Ag UCN monitors are

detailed in Section 8.1. An aluminum foil is placed in the pinhole of one of the paired detectors.

The foil monitor is abbreviated AL, and its twin is the bare monitor or BA. These 3 monitors

are called gate valve monitors. These monitors count hundreds UCN per second during UCN

production and have a background on the order of mHz.

UCN can then pass through a gate valve. This gate valve can open or close the guide exiting

the biological shield. The gate valve is operated via compressed air and is typically only open

during the UCN filling procedure.

After the gate valve, UCN pass through the pre-polarizing magnet (PPM) described in Section

3.2.

After passage through the PPM the UCN are polarized in a high-field seeking state (since only

UCN attracted to high fields can pass through the 6T magnetic field). The spins need to be flipped

in order to be trapped inside the magnetic bottle. Spin flipping is done via an adiabatic fast passage

17



UCN

GV

M

PPM AFP

M

M

TD

Cat

GC AC

Dag

Figure 4.1: Block Diagram of UCNτ . Key: M: Monitor Detector, GV: UCN Gate Valve, PPM:

Pre-Polarizing Magnet, AFP: Adiabatic Fast Passage Spin Flipper, TD: Trapdoor, Cat: Catdoor,

GC: Giant Cleaner, AC: Active Cleaner, Dag: Dagger Detector

spin flipper (AFP). The AFP uses an RF field in addition to a monotonically decreasing magnetic

field to reverse the polarization of UCN [30]. In a rotating frame at the RF frequency ω about the

beam direction, the magnetic field sweeps from aligned along the beam in one direction to being

aligned in the opposite direction. The UCN spin will follow this change in direction adiabatically

going from being aligned to anti-aligned with the beam. In the lab frame, the UCN will go from

being aligned to anti-aligned with the monotonically decreasing field.

The AFP needs to be tuned such that the combination of RF field and magnetic field gives the

resonant condition. In the 2015-2016 and 2016-2017 datacycle, the spin flipper was tuned by fixing

the frequency at ω=372 kHz and tuning the current in the monotonically decreasing B0 coil. The

rate is monitored in either a detector which passes only high-field seeking UCN (via an iron foil)

or by monitoring the rate of the dagger detector inside the trap which acts as a large spin filter.

Tuning is discussed further in Section 12.1.

After flipping in the AFP, UCN then enter a tee in the guide system. A monitor is placed on the

upper portion of the vertical guide at a position above the top of the trap. The height ensures that

only UCN above the trapping potential are counted (and therefore lost). The vertical monitor, or

the standpipe (SP), is a large area detector with the same cross-section as the guide. This monitor
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uses the same 10B coated ZnS:Ag technology as the gate valve monitors. The standpipe counts

significantly more UCN than the pinhole monitors and is used as one of the main monitor detectors

in normalization. The standpipe monitor counts a few thousand UCN per second.

The other direction of the tee guides UCN to a 3-way transition junction. The transition region

consists of a copper box with a copper plate (the catdoor) that can rotate and select the direction

for UCN to travel. The plate can be in 3 positions: at 45◦ which allows UCN to be guided with

limited losses into the trap, horizontally which allows UCN to view a 5th detector, and vertically

which allows the bottom portion of the Halbach array (the trapdoor) to move into position. A 5th

10B coated ZnS:Ag UCN monitor is placed at the downstream termination of the guide system

and is called the downstream monitor. The downstream monitor counts approximately an order

of magnitude fewer UCN than the gate valve monitors, except when the copper plate is actuated

where UCN are freely able to be counted during transition.

UCN are guided into the trap through a copper box and past a transition region where a

∼15 cm square piece of the Halbach array is removed. During the filling procedure, UCN are free

to enter or leave the trap and build up to a saturation density determined by the draining time of

the trap, approximately 70 s.

There are 2 spectral cleaners inside the trap: A large-area cleaner (approximately half of the

trap) with a polyethylene surface and an active cleaner made of a 10B coated ZnS:Ag UCN monitor.

The former is known as the giant cleaner and the latter the active cleaner. Polyethylene has a

negative UCN potential and a high cross-section for upscattering UCN and is therefore effective

at eliminating UCN which impinge on its surface.

Both the giant and active cleaners can be retracted; the giant cleaner can be retracted by

approximately 5 cm. The height of the giant cleaner was determined by lowering the dagger

detector to match the height of the cleaner. The height was compared using a laser level and was

determined to be approximately 38 cm from the bottom of the trap. The height of the active and

giant cleaners were also checked in the same way and were found to be matching.
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The dagger detector is a slab of plastic covered with 10B coated ZnS:Ag UCN monitors on

either side. The profile of the bottom is matched to the profile of the Halbach array so that it can

be inserted into the bottom of the trap. The detector can be raised or lowered between 1 cm to

49 cm from the bottom of the array. In the lowest position the detector drains the trap population

with a time constant of ∼7 s.
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CHAPTER 5

TRAPDOOR

5.1 TRAPDOOR ACTUATOR SYSTEM

The trapdoor actuator system can be seen in Figure 5.1a. Shown is the electronics portion of the

assembly consisting of a servo motor, several drives, power supplies, and an electronics box. The

main gear assembly can be seen in Figure 5.1b. A worm rotates the large gear and the rotation

is turned into linear actuation via 2 arms in a reciprocating motion. The trapdoor only needs to

travel between completely plugging the array and completely withdrawn from the UCN volume.

The worm drive only rotates between limited angles and up and down motion is obtained by

running forwards or backwards. Cutouts prevent the shaft from being driven too far in either

direction.

A Parker Compax3S drive controls the servo motor. The drive was programmed using the

IEC61131-3 standard.

The trapdoor system also controls and actuates a copper plate (called the catdoor) which selects

the geometry of the UCN transition region. UCN enter into a copper transition region at beam

height and are either directed upward towards the trap, into a downstream detector and upwards,

or back to the source. In the first 2 configurations, the plate forms a geometry where UCN do not

see the trapdoor. The copper plate is actuated via a stepper motor and monitored using hardware

switches at the 3 positions.

The catdoor stepper motor is driven by a discrete logic box. Microswitches were placed so that
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(a) Trapdoor control electronics (b) Trapdoor gear mechanism

Figure 5.1: Trapdoor as installed at Los Alamos National Laboratory

they were pressed when the catdoor was at its filling, dump, or up positions. The electronics reacts

to the state of the microswitches and state of the Compax3S controller to drive the catdoor. A

simplified block diagram of the catdoor electronics is given in Figure 5.2.

The catdoor electronics box takes 6 inputs: 3 switches (fill, dump, up), travel direction, latch

reset, and enable. The travel direction, latch reset, and enable are digital outputs from the Com-

pax3S and controlled in software. The box outputs either a square wave or LOW. The square wave

causes the stepper motor to advance one step per pulse.

When the Compax3S resets the latch, Q goes HIGH. If the enable is also HIGH, the AND

evaluates to TRUE and the square wave is passed through the second AND gate. If the enable

were to be driven low, the AND gate would evaluate to false, and no square wave would be

generated.

When any one of the switches is pressed, the final OR output will be driven HIGH. The step
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Figure 5.2: Block diagram of catdoor electronics
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Figure 5.3: State diagram of the trapdoor software

pulse triggers the monostable multivibrator to create a single timed pulse into the set pin of the

latch, driving Q LOW. When Q is LOW, the first AND is evaluated as FALSE and no square wave

is generated.

The Compax3S can then enable the catdoor to rotate until it hits a switch at which point it

stops. The system is moved into the desired state by commanding the catdoor to move until the

correct switch is pressed.

5.2 TRAPDOOR SOFWARE

The Compax3S controller was programmed as a state machine. The state diagram is given in

Figure 5.3.

The software consists of several transitional initialization states, four configurational states

(catdoor up/down/fill and trapdoor down or catdoor up trapdoor up), and a single absorbing

error state. Once in the error state the unit will not respond to further transition requests until it

is power-cycled.

When the unit is powered on, it is in the default state. The program can only transition into

a homed or error state. The apparatus can be homed via a manual homing program. The homing

finds a set position in the trapdoor travel by locating the edge of a switch. Once in the homed

state it can proceed to one of the 4 main states or to the error state.
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Cat Trap Error

1 1 The catdoor engaged at the up position but has fallen off the switch

1 0 One of the limit switches has been pressed

0 1 There was a following error (slipping in gears or coupler)

0 0 The error was none of the above

Table 5.1: Compax3 digital output error table

Once in a main state, the apparatus can only transition to other main states or the error state.

The software is notified of a transition request via RS232 communication or hardware signals. The

software determines how to move the catdoor and trapdoor to safely transition the system into the

new state. If an error occurs during transition the system will go to the error state.

Errors occur from the firmware (power conditions, servo performance, temperature, etc.) or in

software (inconsistencies in the state or status of switches). The former are part of the Compax3S

firmware and are not controlled or modified in any way. The latter are programmed in software.

The software is able to stably operate for several days or weeks after successful homing. The

most common cause of failure was degradation of the worm/wheel interface causing servo tracking

errors. Periodic lubrication (approximately monthly) mitigates the servo tracking problems.

The Compax3 was also configured to generate 2 signals that indicate catdoor or trapdoor

movement respectively. These signals are sent to the DAQ and recorded during the run so that

the times when the actuator moves is known. In the event of an error, the outputs encode some

information, given in Table 5.1. Additionally, 2 inputs to the unit were used to allow hardware

signals to request transitions. Three unique combinations (low/high, high/low, high/high) are used

to command the trapdoor to 3 unique states. This feature was unused at the time of writing.

The trapdoor is commanded from a Linux PC. A server program runs on the PC independently

of the UCNτ experiment control program. The control program sends requests to the server pro-

gram which communicates directly with the trapdoor controller via RS232. Because the Compax3S
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software acts as a state machine, the server program does not need to do any error checking or

keeping of state.
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CHAPTER 6

GIANT CLEANER

The giant cleaner is the primary way in which high-energy UCN are removed from the experiment.

A rendering of the giant cleaner hardware can be seen in Figure 6.1. The hardware was designed

by Walt Fox and was first installed during the end of the 2015-2016 run cycle. The height was

discovered to mismatch with the original small cleaner; the cleaning height was lowered to be

approximately 38 cm from the bottom of the trap during the subsequent shutdown period. Small

standoffs were machined (not pictured in rendering) and attached to the aluminum structure that

holds the polyethylene at the 3 mounting points. The cleaner was designed to move at least 5 cm

upwards at the end of the cleaning time to avoid cleaning during storage time.

The actuator is a Nook Industries CC Series Compact Cylinder screw drive. The stock motor

was replaced with a stepping motor so that the actuation could be controlled more easily. The screw

has a lead distance of 0.2” per revolution, the Nook drive has an 18:1 gear ratio, the stepper motor

has a 4000 count per revolution encoder, and the stepper motor travels 1690000 encoder counts

between the raised and lowered position. This moves the shaft 4.69” which should correspond to

moving the giant cleaner approximately >5 cm up and down.

The Nook drive was configured from the factory to be used with a DC motor. The limit switches

were factory configured to bypass a diode such that the circuit path is interrupted when a limit

switch is pressed. The limit switches were instead taken out of the diode circuit and act as limit

switches only.
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Figure 6.1: Rendering of the giant cleaner. A: Polyethylene surface, B: Mounting bracket, C:

Vacuum break, D: Linear actuator

The bottom limit switch was chosen to act as a homing position. During startup, the drive will

move until the switch is pressed. Software limits of 1% on either end were chosen so that the limit

switches were not pressed during normal running.

Repeatability was only measured with the stepper motor encoder. The limit switch was reached

with an error of approximately half a percent which would correspond to 20 µm difference if the

coupling was direct. Friction may cause a larger difference in the cleaner height, but the cleaner

height repeatability was not measured directly.

The cleaner software consists of a Python server which accepts commands from the control

system and forwards them to the giant cleaner. The software uses the Applied Motion SCL

command language. Initially, the drives were commanded to actuate by the number of steps only

and did not use the encoder. Future versions of the software were programmed to use the encoder

to check the final position.

Movement commands were programmed to immediately take effect. The drive is also capable

of queueing commands and popping off the queue on external triggers. A software position limit
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is imposed in the Python server, but is not enforced on the drive. The Python software keeps a

persistent state so that it knows where to command the cleaner.
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CHAPTER 7

OVERVIEW OF UCNτ ANALYSIS

The following analysis is a detailed account of one of the three independent analyses performed on

the data taken in 2016-2017 in the UCNτ experiment [31]. The lifetime can be measured in one

simple equation, only needing the sum of counts in long and short runs. The difficulty of analysis

lies in ensuring that the sum of UCN in long and short runs are compared on equal footing with

sufficient accuracy. Loss of just 20 UCN out of 30000 over 1400 s can lead to a shift in lifetime of

0.4 s, which is an unacceptable shift in τ . The effects of normalization and counting efficiencies

also need to not perturb the sum of UCN to similar precision.

The lifetime will be measured by taking the sum of UCN in paired short and long runs. A

lifetime will be calculated for each pair taking into account the source strength, counting efficiencies,

and backgrounds. The sums will come from either identification of individual UCN events or by

integration in current mode where each UCN is represented by tens of individual photons. These

individual lifetime values will then be averaged for a lifetime value for each run condition. These

averaged lifetime values will again be averaged for a final, high-precision measurement of τn.

7.1 SYSTEMATIC EFFECT ANALYSIS

Systematic effects come in one of 2 flavors: direct loss of UCN during storage or distortions in the

sums. Loss mechanisms will be either measured via the data or simulated to place limits on the

shift in τ . UCN loss during storage can come from uncleaned overthreshold orbits, microphonic
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heating, depolarization, and residual gas upscattering.

Effects which distort the sums include normalization of the source flux, background subtraction,

pileup, deadtime, and phase space evolution. These effects will be studied and limits placed on

them.

7.2 MISCELLANEOUS TASKS

Most of the running time is dedicated to production runs to measure τn. However, some portion of

runs were conducted to explore the operation of the UCNτ apparatus and to investigate systematic

effects such as phase space evolution or detection efficiency. These miscellaneous run types are

investigated and interpreted. These runs typically do not yield a quantitative effect on the lifetime.
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CHAPTER 8

UCN EVENT RECONSTRUCTION

8.1 ZNS:AG SCINTILLATOR

In the UCNτ apparatus, UCN are detected via an in situ scintillator-based detector [32]. The UCN

detectors used in the experiment consist of a ZnS:Ag screen prepared by Eljen Technology with

3.25 ± 0.25 mg/cm2 of phosphor coated in a thin (< 20 nm) layer of 10B. The ZnS:Ag thickness

corresponds to 8 µm if it were a pure crystal, but due to the polycrystalline nature would be thicker.

The ZnS:Ag is coupled to a PMT either directly in the case of monitor detectors, or via wavelength

shifting fibers in a PMMA slab [33]. In the latter case, the fibers were fed into 2 separate PMTs

so that coincidence events could be constructed between them. UCN incident on the coated boron

surface easily penetrate due to the low material potential of 10B and have a high probability of

capture (10B has a 3835 barn cross section for thermal neutrons - compared to 1.1 barn for Zn

nuclei and 0.53 barn for S nuclei [34]) - in the 10B(n, α)7Li reaction. The absorption length of

UCN in the 10B layer is ∼40 nm, which was chosen as a tradeoff between absorption efficiency and

light collection efficiency. The decay products - either the α, 7Li ion, or both - penetrate the 10B

layer and create scintillation light in the ZnS:Ag layer. The decay is back-to-back, so one particle

is guaranteed to be emitted towards the scintillator. In 96% of the decays, a γ is also produced,

but is neglected because the probability of interaction in the ZnS:Ag layer is small. Each UCN

that is absorbed on the surface then produces a burst of light that can be detected.

Initially, ∼7.5 to 9×104 photons are yielded from the ZnS scintillator isotropically during a
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UCN event [32]. Half escape and half have a chance of entering the PMMA slab and interact with

the wavelength shifting fibers. Photons that are absorbed in the fibers are re-emitted isotropically

and conducted to one of 2 PMTs. In the end, roughly 20 photons are measured in the two PMTs

per UCN, meaning the collection efficiency is on the order of 1 per two thousand.

The light from the scintillation events in the detector can be measured by either summing the

total number of photons (called ”singles” analysis), or by finding coincidence events to determine

the number of UCN counted. In the former case, the number of UCN counted is never used. The

singles analysis is susceptible to large backgrounds which need to be measured for each run; the

coincidence analysis is less sensitive to backgrounds but needs deadtime and pileup corrections due

to the long emission time constant of the ZnS:Ag scintillation light.

The individual photons from the scintillation light are discriminated and counted in a Multi-

Channel Scaler unit which records the event times of each pulse it receives.

The light from ZnS:Ag has several time components: a short time constant and several longer

time constants. The scintillation time constant is commonly stated as 200 ns [35] [36, p. 238].

However, in our detector the ZnS:Ag also has long time components up to several microseconds as

can be seen in Figure 8.6.

8.2 COINCIDENCE IDENTIFICATION

Coincidence identification can improve the signal to noise ratio observed from UCN counting. When

the total sum of photons is measured, the backgrounds are around 1 kHz with a total number of

counts around 1×106. Measurement time is at least 100s, giving a signal to background of around

9:1. For coincidences, the background is around 100 mHz and the number of events is around

20000, giving a signal to background of around 2000:1. Due to the clumped nature of photons, the

statistical precision is equivalent between the two methods. However, the coincidence method is

superior when the expected signal is small (when looking for uncleaned UCN for example).

The large light output from the ZnS:Ag allows the creation of coincidence events to reduce
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background rate. Charged heavy ions produce about 1.3 times higher shaped pulses compared to

NaI:Tl crystals when viewed with a PMT directly [36, p 238]. NaI:Tl produces 38000 photons/MeV

for comparison. Coincidence between the 2 PMTs (a count in PMT 1 followed by a count in PMT

2 within some window) has high backgrounds from non-UCN particle events. A secondary cut on

the sum of photons in the tail is used to discriminate UCN events from backgrounds even further.

The algorithm used to identify UCN events is as follows:

• Search for a coincidence between PMT 1 and PMT 2 within 50 ns

• Sum the first two counts plus all subsequent counts in PMT 1 and PMT 2 while the interar-

rival time is <500 ns

• Take events where the sum is ≥ 8

• If the event does not pass cuts, continue with the count after the first count in PMT 1 or

PMT 2 that started the coincidence search

A variant can be done where instead of the ”telescoping” window based on interarrival times,

a prescribed window is used. Step 2 is replaced by summing while the arrival time is <4000 ns

since the first PMT 1 or PMT 2 event.

A coincidence event is displayed in Figure 8.1; each photon count is a vertical line. Figure 8.1a

shows the long tail (tens of photon counts out to 10 µs). The initial burst of short time constant

photons can be easily seen. Figure 8.1b shows a further zoomed in view of photon events. It can

be seen that this event satisfies both coincidence algorithms. Two counts are found within 50 ns

of each other, and the sum where the interarrival time is less than 500 ns is easily more than 8.

In this case, the integration for the telescoping coincidence would end after 3µs because the next

count in PMT 1 or PMT 2 is >500 ns. The interarrival time is the time from a PMT 1 or PMT 2

event to the next PMT 1 or PMT 2 event.

A rough estimate of efficiency can be taken by measuring the coincidences between the main

UCN dagger detector and a separate cleaning detector which also views light from UCN events

in the dagger detector. The efficiency is estimated by dividing the coincidence rate between the
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Figure 8.1: Photon arrival times for a single UCN event

dagger and the cleaner by the rate in the cleaner.

This estimates the efficiency at ∼95%. That is, 95% of 11B decays that produce significant

amount of light are detected by the dagger. This does not account for UCN interactions with 10B

which can further reduce efficiency of UCN counting.

8.3 BACKGROUNDS

Major sources of backgrounds in the PMT are PMT dark noise, non-UCN particle events, and

detector actuation. PMT dark noise is caused by thermionic emission of electrons which are

subsequently accelerated and counted; this is temperature dependent and ∼500 Hz per tube at

290 K. Non-UCN particle events come from muons, α particles, etc. which create scintillation light

in the ZnS. Alternatively, particles could create Čerenkov light when passing through the PMMA

plastic which embeds the fibers or through the fibers themselves. The detector is actuated using

a stepper motor which has a switching power supply at 20 kHz [37] which can broadcast EMI
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(electromagnetic interference) noise and cause triggering in the electronics chain.

Only particle events contribute significantly to coincidence backgrounds. Because the dark

noise has a low rate, there is very little probability that there would be an accidental coincidence

in the 2 PMTs (the dark noise is independent), in addition to 6 extra events within the integration

windows. This can be modeled simply with a Poisson process: the probability of a dark count

arriving within 50 ns of a previous one is 1 − exp(−500 Hz×t) or about 25 ppm. The probability

of 6 or more extra events could be approximated with a Poisson distribution with an expectation

of 1 kHz×4000 ns (the sum of the 2 rates over 4 µs), or 1 − Γ(5+1,1000 Hz×4000 ns)
5! or 6 parts in

1018. The combined probability is 1.5 parts in 1022 for each 4050 ns; we could expect one event

per terasecond. The same is true for the 20 kHz noise; it could create initial coincidences because

the PMTs see the same source, but the interarrival time for 20 kHz noise is 50 µs so it will not

contribute enough counts to pass the threshold.

The dark noise is time dependent from both ambient temperature fluctuations and internal

fluctuations due to heating of the PMTs during operation in the vacuum. Figure 8.2 shows the time

dependence of the dark rate. Due to the fluctuations it is important to assess singles backgrounds

on a run-by-run basis. In the 2016-2017 data, the singles backgrounds were taken for each run at

either the end of the run (when available), or with the dagger at the cleaning height (where there

were no observable counts). The background counts were assigned Poisson uncertainties.

Backgrounds from particle events are position dependent. Figure 8.3 shows position dependence

of background singles. For each run, the rate at different heights is subtracted from the rate at a

reference height (chosen to be the cleaning height of 380 mm). Some runs did not have background

segments at 10 mm and some runs did not have a cleaning check step. Additionally, a set of

background runs were taken in 2016 where the dagger was placed in 4 positions; another set of

background runs were taken in 2017 where the dagger was placed in 9 positions. The position

dependence could be caused by extra background particle events at higher heights. The rate

differences were fit to
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Figure 8.2: Dark rate as a function of time in the experimental area. Runs come from several

months of data taking and several cycles of the vacuum system/detector electronics

∆R(h) = Ah2 −A3802, (8.1)

where A is the fitted parameter, and h is the height of the dagger in mm. This forces the difference

to be 0 at 380 mm. The χ2

NDF was 3 for the fit to all data points below 380 mm. The errors in the

fit were estimated by the MINUIT package via the ROOT data analysis framework.

Points above 380 mm were discarded for the fit. Above the height of the cleaning check, the

geometry is significantly more complicated which could lead to a departure from the simple fit

function. Additionally, the background at 490 mm is never used in the extrapolation for the

singles analysis so the fit does not need to be accurate in that regime. For h < 380 mm, A =

8.0E-5± 2.3E-6 s−1mm−2.

Coincidence backgrounds were observed to be stable throughout run segments. The first data

set taken has a slightly lower background. For coincidence data, backgrounds were measured during

the long holding time for each pair and corrected for position dependence in the same way as the
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Figure 8.3: Position Dependence of singles background. Data comes from 4 sets - either dedicated

background runs or production runs in either 2016 or 2017.

singles data. Figure 8.5 shows the coincidence background from the holding time as a function of

time in the experimental area.

Coincidence backgrounds also were position dependent. To evaluate the position dependence,

the 4 step background runs were combined with backgrounds measured at the holding height during

long storage runs and at the bottom of the trap. Coincidence background rates showed an opposite

trend: background rates were higher at the bottom of the trap. A linear function was used to fit

this data. Figure 8.4 shows the fit. The slope was found to be −5.1E-5± 7.3E-6 s−1mm−1.

8.4 DEADTIME

Due to finite discriminator width, deadtime exists in the detector for singles events. A nonpara-

lyzable deadtime correction is made [36, p. 122]:

n =
m

1−mτ , (8.2)
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where n is the corrected rate, m is the recorded rate, and τ is the fixed deadtime. An uncertainty

of 20% is given to τ based on investigations of the gate width using an oscilloscope.

8.5 RATE DEPENDENT EFFECTS IN COINCIDENCE ANALYSIS

The coincidence finding routine combined with the long time constants of the ZnS:Ag light cause

rate dependent counting effects. Deadtime effects come from the several µs integration windows.

Pileup effects come from the long tail of light in the scintillator. The efficiency of counting UCN

is higher at higher rates because there is more light and therefore a higher chance to exceed the

threshold.

Standard deadtime corrections as described above do not work with the coincidence algorithm.

This is due to deadtime corrections assuming no counts can be detected inside the deadtime of the

system. In the detection system for UCN, this is not true; an event can begin inside of a summing

window, but still be counted after the window has ended. Events that fall inside of the deadtime

aren’t ”dead” but just have a reduced probability of detection.

The pileup causes additional UCN to be counted at high rates. When rates are high, if a

candidate UCN event is preceded by a UCN event, photons from the tail of the first event can be

measured in the second. The extra photons add to the sum and bring some events over threshold

where they would not have been overthreshold otherwise. Additionally, there is extra probability

of double counting events on the tails due to the same effect.

8.5.1 RATE DEPENDENT EFFECT SIMULATION

Due to the inability to make standard deadtime corrections and the pileup effect, Monte Carlo

simulations can be used to correct measured lifetimes when using coincidences.

The Monte Carlo simulation is based on resampled data from the 2016-2017 run cycle. A

summed waveform and pulse height distribution was compiled for both foreground and background

counts. In each case, coincidences were identified and only coincidences without other coincidences
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preceding or following within 40 µs were used. For foreground counts, a cut of 4 photons was

used with 50 ns initial coincidence and 500 ns telescoping integration window. For background

counts, this cut was lowered to 2 photons with the same windows. The arrival time of photons for

each selected coincidence were compiled into a histogram with a length of 40 µs and the number

of photons in each PMT were compiled into a pulse height histogram. A separate arrival time

histogram was generated for each PMT and a separate histogram was generated for when PMT 1

was the first event or PMT 2 was the first event for a total of 4 arrival time histograms. The fraction

of coincidences that began in PMT 1 was also recorded. Additionally, the average background rate

was recorded so that background coincidences could be injected into the data. Figure 8.6 shows the

arrival time histograms used for the Monte Carlo simulation. Figure 8.7 shows the Pulse Height

Spectrum for the foreground used in the simulation. Figure 8.8 shows the Pulse Height Spectrum

for the background.

For the foreground data, the two 3-step run segments were used. Data was taken from the

beginning of the 2nd dip to 20 s into the last dip. For background runs, data was taken from 750 s

of the holding time 100 s before the first dagger step in the counting period. All long runs taken

from every run segment analyzed were used for the background measurement.

To generate a coincidence, a random pulse height for PMT 1 (N1) and PMT 2 (N2) is drawn

from the PHS histogram. Then a coin is flipped to determine whether PMT 1 or PMT 2 is the

start coincidence. One count is generated at tcoinc = 0 (time relative to the coincidence start) for

the PMT which starts the coincidence and the pulse height is decremented. Then (N1) arrival

times are pulled from the appropriate PMT 1 histogram and (N2) arrival times are pulled from

the appropriate PMT 2 histogram. These are inserted into the data. The hardware discriminator

deadtime is not emulated, because the timing histograms and pulse height spectra already have

that information because they were taken from real data. The interarrival time in the simulation

can be less than the discriminator deadtime.

The time profile of coincidence events is generated with n nonhomogeneous Poisson process.
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Figure 8.7: Pulse Height Spectrum for Foreground counts.
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Figure 8.8: Pulse Height Spectrum for Background counts.

A nonhomogeneous Poisson process is described by a time-dependent rate function λ(t) [38]. One

simple way to simulate a nonhomogeneous Poisson process is by thinning. The following algorithm

from Lewis and Shedler describes the thinning process of a nonhomogeneous Poisson process:

Nonhomogeneous Poisson Process

t = t0, R > λ(t) ∀ t > t0

While t < tend:

U1, U2 ∼ U(0, 1)

t = t− log(U1)/R

If t > tend: Exit

If U2 < λ(t)/R: Record Event

Table 8.1: Prescription for Thinning Algorithm

Additionally, a homogeneous Poisson process is used for both background coincidences and

dark counts. In the homogeneous case, exponential interarrival times are generated but there is no

limiting rate R to compare to.
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The arrival time distribution of coincidences in the counting phase of the experiment is measured

from the data. The UCN counting profile is fit to single exponentials and these single exponentials

give the limiting rate R in the algorithm given above.

At the end of event generation, the counts are time-ordered and given to the same coincidence

routine as used in the production data.

To measure the shift in the lifetime, synthetic long and short runs are generated and analyzed

as in the production data. Short runs are created with Nshort UCN events on average, and long

runs are given Nlong = Nshorte
−Thold/τsynth events on average where Thold is the synthetic holding

time, and τn is the synthetic lifetime. Comparison of the measured τanalyzed to τsynth give the

predicted shift in lifetime as a function of Ns and the cuts.

8.5.2 RATE DEPENDENT EFFECT SIMPLIFICATION

A simplification can be made in order to speed up execution. The efficiency closely matches a

linear function of time, ε = A+BR where R is the rate. Given a time profile of UCN counts, Φ(t),

the expected number of counts would be

Ncounted =

∫ end

0

ε(t)Φ(t)dt =

∫ end

0

αΦ(t) + βΦ(t)2dt. (8.3)

The arrival time profile of UCN during counting is exponential: Φ(t) = N
κ e
−t
κ , where κ is the

time constant of counting on the main detector. Using exponential arrival time, the expected

counts will be

Ncounted(Thold) =
∑
dips

α

[
Ne−Thold/τ

κ

]
κ
(

1− e−Lκ
)

+ β

[
Ne−Thold/τ

κ

]2
κ

2

(
1− e−2L

κ

)
, (8.4)

where Thold is the holding time, τ is the lifetime, and L is the length of counting in a given dip.

The lifetime expected to be measured is then given by
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τ =
Thold

log( Ncounted(0)
Ncounted(Thold))

, (8.5)

where the error is estimated by Gaussian propagation of the errors in α and β.

Comparison of the full Monte Carlo simulation to the simplified model shows agreement within

0.013 s. The average of differences between the full simulation and the simplified model is

0.013±0.006 s with the largest disagreements at high rates where nonlinear effects on the rate

dependent efficiency may become more important. For rates comparable to the average rates seen

in the experiment, the shift is 0.0078±0.0055 s with the largest deviation being 0.038 s. In the case

of 9 dagger steps, the full Monte Carlo simulation and simplified simulation agree within 0.004 s.

8.5.3 IDENTIFICATION OF OPTIMAL CUTS

An optimal cut where ∆τ = 0 can be identified by using Equation 8.5. Because the deadtime and

pileup pull the lifetime in opposite directions, there should be points where there is no predicted

rate-dependent correction. Qualitatively, the longer the integration window is, the larger the

deadtime contribution is. The cut on photon number has a valley - The pileup effect is minimized

for some choice of number of photons. At lower thresholds, the effect of counting extra UCN

become more important and at higher thresholds, the effect of boosted efficiency due to extra

photons from previous events is more important.

The point of minimum pileup effect is chosen and the window is tuned so that the shifts due

to pileup and deadtime are canceled. For this analysis, the 1 dip scenario is investigated, but

the point of zero ∆τn should be the same for all counting profiles because it depends on the rate

dependent efficiency. Wherever the rate dependent efficiency is flat, ∆τ should be zero.

Figure 8.9 shows the shift in lifetime as a function of the coincidence cuts. Figure 8.10 shows

the shift in lifetime as a function of the integration window for the optimal photon sum cut. A sum

of 7 photons was chosen because it minimizes the derivative in the number of photons dimension.

In this case, the optimum is found to be at 408.96 ns for a 7 photon cut; rounding this to the
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Figure 8.9: The rate dependent shift in τn as a function of the photon sum threshold, and the

integration window. Data was fit to ∆τn = α+ βNph + λ(Tsum − µ) for illustrative purposes.

nearest 800 ps timestamp would give an integration window of 408.8 ns.

8.5.4 INVESTIGATION OF DEADTIME EFFECTS

The deadtime correction given by Equation 8.2 is unable to properly correct for deadtime. This

can be investigated by using a modified version of the simulation and analysis. To investigate

the deadtime only, the pileup effect was ”turned off” by tagging UCN events (the events gener-

ated by the Poisson process) with unique identification numbers. Additionally, the variable-sized

integration window is replaced by a fixed-length window to simplify the deadtime calculation.

The coincidence finding routine is modified to only sum photons from one ID at a time. Because

the pileup effect is caused by counting neutrons in the tail of a previous event, counting only photons

from a single event will remove the effect. Simulations show that the deadtime correction over-

corrects and leads to residual rate dependent effects. When the pileup is disabled and a similar

cut to the optimal cut is used (7 sum threshold and a 1500µs fixed length window), the deadtime
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Figure 8.10: The rate dependent shift in τn as a function of the integration window. Data was fit

to a linear function and the fit was used to predict where ∆τn = 0.

correction given by Equation 8.2 overcorrects by 0.22±0.01 s.

This is caused by UCN events that begin inside the integration window of a previous event, but

are still able to be counted due to photons in its tail. The deadtime correction assumes that the

system is ’dead’ for that time and any event that begins inside the deadtime cannot be counted,

and so over-estimates the correction. This phenomenon can be turned off in the simulation by

keeping a list of UCN event IDs that begin inside of the deadtime of a previous event and ignoring

subsequent photons from that UCN event. In that way, the system guarantees that the deadtime

is truly dead. Using the same cuts and this scheme, the deadtime undercorrects by 0.07±0.01 s,

showing that the deadtime correction given by Equation 8.2 does not work without knowledge of

which pulse came from which UCN.

Due to the inability for Equation 8.2 to correct for deadtime in the detector system, only the

simulation can disentangle the effects of deadtime and pileup. When coincidences are used for

analysis, the optimal cuts identified in the previous section are used and no correction is made for
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rate-dependent effects. Coincidence analysis is not used to measure the lifetime because of the size

of corrections possible when using coincidences.
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CHAPTER 9

NORMALIZATION

9.1 INTRODUCTION

The bottle method of measuring the neutron lifetime does not need absolute measurements of the

detector efficiencies or the populations; however, a relative measurement of the initial population

is needed. Between a short and a long run, the source production can change dramatically both

in strength and energy distribution. The source flux degrades over time. The deuterium crystal

accumulates cracks, contamination, and layers of low-density snow which cause reduced output

and spectral distortions.

Several monitor detectors are installed on UCNτ to monitor both the flux and the spectrum

coming from the source. These monitor detectors are 10B coated ZnS:Ag detectors viewed directly

by a PMT. The signal is integrated, shaped, and discriminated by analog electronics and counted

in the same MCS unit that measures the main in situ detector.

The counts from the detectors are used for normalization of the relative UCN densities, spectral

correction, and filtering of ”bad” runs.

9.2 DESCRIPTION OF DETECTORS

The UCNτ system has the following monitor detectors:

• ”old monitor” - A pinhole monitor before the UCN gate valve

• ”bare monitor” - A smaller pinhole monitor before the UCN gate valve
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• ”foil monitor” - A monitor built to be identical to the bare monitor, but with an aluminum

window to block low energy UCN

• ”standpipe monitor” - A monitor on the guide system after the adiabatic fast-passage spin

flipper; set to a height above the cleaner to monitor high-energy UCN

• 3 addition standpipe monitors which are pinholes in the standpipe guide

• ”downstream monitor” - A monitor behind the UCN loading door

The standpipe monitor (SP) gives the highest rate and is always used to measure the trap

population. One of either the bare (BA) or old (OL) monitor is used as well. The additional

standpipe monitors have low rate and are unused in this analysis. The downstream monitor also

has a low rate and is thus unused. The downstream monitor is interesting as a check for drained

UCN after the trapdoor is opened at the end of a run.

Several detectors had multiple pulses per UCN. In the standpipe detector, the contamination of

errant pulses was as high as 20%. A uniform 20 µs deadtime was imposed on the monitor detectors

to eliminate multiple pulsing. The same deadtime correction used for individual photon counts in

the main detector was used to correct the monitor counts.

9.3 RUN FILTERING

Occasionally, runs have filling periods where the flux from the source drops unexpectedly. This

can be due to dropped proton pulses from the accelerator, or unexpected increases of the pressure

near the source. These runs can be filtered out so that only runs with similar filling conditions are

used.

The arrival time of UCN on the standpipe monitor is used to measure run quality. The arrival

time is fit to the function

Φ(t) =
∑
i

φi(1− e−(t−Ti)/κ1)e−(t−Ti)/κ2 , (9.1)
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where φi is the strength of an individual pulse, Ti is the time offset for a given pulse, κ1 is the

saturation time constant, and κ2 is the decay time constant. κ1 and κ2 are measured by fitting

Equation 9.1 and keeping them as free parameters; in 2016-2017 κ1 = 0.4 s and κ2 = 24.75 s. The

time offsets were given by Ti = TH-GX + 3 s where TH-GX is the arrival time of proton pulses on

the tungsten target and the additional 3s accounts for travel time from the source to the monitor.

Figure 9.1 shows an example of a fitted arrival time histogram from a single run.

The beam was run in 2 different patterns. Approximately the first half of the 2016-2017 data

was taken with 10 proton pulses every 5 s. Subsequent runs used 18 or 19 pulses every 10 s. This

affects the total number of pulses during the 150 s filling period and the spacings between bursts

of UCN seen in the monitors.

Bad runs are filtered out by looking at the distribution of φi for the fill. Because of the small

number of observations, a test based on medians was chosen. The test uses a modified Z-score test

statistic to determine the presence of outliers [39, §1.3.5.17]. The test statistic is

Mi =
0.6745(xi − x̃)

MAD

MAD = median(|xi − x̃|),
(9.2)

where tilde denotes the median and MAD is the median absolute deviation [from the median].

For a given run, the Mi was calculated for each φi, and the maximal Mi was used to test

the farthest outlying pulse. Exceptions were made where the MAD was more than 10% of the

median; in some runs the dispersion in pulse heights was so high that it affected the use of MAD

in normalizing the test statistic.

The first UCN pulse was observed to have a systematically stronger φ than subsequent pulses.

To avoid the early pulses causing false positive outliers, the maximal Mi was calculated separately

for all i and again for i > 2 (when using 10 s beam spacing) or i > 4 (when using 5 s beam spacing).

Visual inspection of the distribution of Mi led to imposing cuts of 20 for every pulse and 7 for

the tail; these cuts did not change during the analysis. Figure 9.2 shows the distribution of Mi for
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Figure 9.1: Filling fits to Equation 9.1.
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Figure 9.2: Distribution of Mi in the tail and the full fill for production runs. Red line shows

acceptance cuts. Acceptance was 85%.

all production runs.

9.4 RUN PAIRING

The source output fluctuates significantly over the course of days as seen in Figure 9.3a. To mitigate

the effects of changing source conditions, the lifetime was measured in separate trials where the

short and long runs were taken close in time. Runs were paired with an automatic pairer. The

algorithm is given below:

M is the maximal M score, SP is the standpipe rate, ∆T is the holding time, and T is the start

time of the run in unix time. A time difference test was added to avoid pairing runs that are far

apart in time; evolution of the source may cause problems in normalization if they are separated

by too long. Runs were only paired if they were taken within 4 hours. The flux is also compared

and if the rate is too different, the runs are not paired. If the ratio of M1

M2
or M2

M1
(defined later) is

less than 0.9 the pairing is rejected.
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Algorithm 9.1 Prescription for Run Pairing.

procedure Run Pairing

for all i < N do

if (Mtail,i < 7) & (Mfull,i < 20) then

for all j 6= i do

if (Mtail,j < 7) & (Mfull,j < 20) & (|∆Ti − ∆Tj | > 500) &
(

SPi
SPj

≮ 0.9
)

&(
SPj
SPi

≮ 0.9
)

& |Ti − Tj | < 14400 then

Pair i, j and remove

9.5 EXPONENTIAL WEIGHTING

UCN bursts from the source that arrive closer to the time when the trapdoor is closed are more

important in the normalization. A UCN pulse that arrives long before the trapdoor is closed

will eventually drain from the trap. Over many pulses, the density inside the trap trends toward

saturation, and the most recent pulses contain the most information about the density inside the

trap. The trapped number of UCN tends to follow

Ntrapped = Nmax

(
1− e−t/κ

)
, (9.3)

where Nmax is the saturated population, and κ is the saturation time constant.

The normalization needs to estimate the density in the trap, N̂trapped. When integrating the

monitor rates Equation 9.3 needs to be recovered. If a constant flux Φ is considered, then one

density estimate is

N̂trapped = γ

∫ T

0

Φe(t−Tend)/κ, (9.4)

where Φ is the UCN flux, γ is some constant that determines the proportionality between a flux

measurement and a number measurement, and Tend is the length of the filling period during which

UCN can enter or exit the trap through the entrance. This recovers the expected saturation
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behavior from a uniform UCN flux. For the data, Φ is replaced by the counts seen in monitor

detectors and a sum is taken over each count instead of an integral:

N̂trapped = γ
∑
i

1

κ
e(ti−Tend)/κ = M, (9.5)

where M is a weighted monitor signal, e.g., MSP is the weighted signal from the standpipe.

The time constant, κ, was determined experimentally in 2014 by fitting the loading time con-

stant of the trap. The time constant κ was found to be 70 s.

9.6 SPECTRAL EVOLUTION

The spectrum of UCN exiting the source varies substantially from the initial freeze-in of the deu-

terium crystal to the last production run before remaking the source. Additionally, the spectrum

is different between builds of the source. Changes in deuterium shape, source gas pressure and

composition, defects in the deuterium crystal, or contaminants can affect the spectrum.

For a perfect normalizer, the quantity NUCN/MSP (the normalized UCN counted after storage

over the weighted monitor) should fluctuate around a central value and not be correlated to source

conditions. However, because the trap selects only part of the UCN spectrum from the source and

the spectral acceptance of the monitors and the trap is different, NUCN/MSP correlates with source

conditions and affects the ability to properly normalize the data. This can be seen in Figure 9.3a.

9.7 SPECTRAL CORRECTION

Some corrections can be made to improve the normalization performance. Because several monitor

detectors are used, they can be added so that their sum can balance out the spectral drift. The

normalization then becomes

M = α×MSP + β ×M[OL/BA], (9.6)
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where α and β are constants determined by a linear regression where Ncounted = α ×MSP + β ×

M[OL/BA].

The linear regression is done using the scipy scientific computing framework independently for

each running condition. A cross-segment regression is not done because each run segment could

have a different spectral dependence due to the counting and cleaning conditions. Figure 9.3b

shows the result of applying this normalization to the data from Figure 9.3a.

The correction is not perfect - the trap population cannot be predicted sufficiently from the

monitor detectors to give the expected distribution in most run segments. However, the correction

does improve the normalization and in some cases is sufficient. Table 9.1 shows the χ2

NDF for the

run sets analyzed in 2015-2016 and 2016-2017. The token ”GC” is the usage of the giant cleaner,

”AC” the active cleaner, ”DC” is deep cleaning with the dagger detector, and the full/half field is

the holding field.

9.8 SOURCE PARAMETERS

Conditions in the source may affect normalization. For example, the temperature of the solid deu-

terium crystal may affect the production in a way which is not captured by the spectral correction

applied from Equation 9.6.

In the 2016-2017 dataset, a large number of source parameters were recorded into a MySQL

database. Each measurement was taken roughly every few seconds, up to every 10s depending on

sensor equipment limitations. The measurements of most interest to UCN production are listed in

Table 9.2.

For the target temperature, deuterium temperature, moderator temperature, and source pres-

sure both the average value during the filling time when beam was on target, and the maximum

value during the run are reported. For the trap pressure, the average pressure during the run is

reported.

Figure 9.3b shows some residual correlation of the normalization which is unexplained by the
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Run Set χ2

NDF NDF

2015-2016

300s Clean 4 Dip NoGC AC DC 1.6 81

100s Clean 1 Dip NoGC AC DC 4.1 34

100s Clean 1 Dip NoGC AC DC 2.5 72

100s Clean 1 Dip NoGC AC DC 1.0 35

100s Clean 1 Dip NoGC AC DC 200s Hold 1.1 23

100s Clean 4 Dip GC AC NoDC 1.4 28

100s Clean 4 Dip GC AC DC 1.0 12

200s Clean 4 Dip GC AC NoDC 1.9 23

2016-2017

200s Clean/1 Dip 6.1 72

200s Clean/9 Dip 7.4 53

300s Clean/9 Dip 2.1 55

50s Clean/Full Field 1.6 67

50s Clean/Half Field 1.6 60

Table 9.1: χ2

NDF of the Normalization, assuming that NUCN/M should be normally distributed

about its mean

Measurement Description

Normalized UCN detected Sum of UCN normalized with 2 monitors

Target temperature Average of sensors near tungsten target

Deuterium temperature Average of sensors on cryostat

Moderator temperature Average of sensors near polyethylene beads

Source pressure Pressure inside deuterium volume

Trap pressure Average pressure inside trap

Time Time and date that run was taken

Table 9.2: Description of peripheral source measurements

58



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
um

Tg
t_
fil
l

Tg
t_
m
ax

D
2_
fil
l

D
2_
m
ax

M
od
_f
ill

M
od
_m
ax

S
rc
_f
ill

S
rc
_m
ax

Ta
u_
P

tim
e

Sum

Tgt_fill

Tgt_max

D2_fill

D2_max

Mod_fill

Mod_max

Src_fill

Src_max

Tau_P

time

20
0s

 C
le

an
 1

 D
ip

Figure 9.4: Correlation matrix for 200s Clean/1 Dip set.

monitor detectors. The correlation between the normalized number of UCN and each of the source

parameters can be investigated to determine if a significant relationship exists.

Figures 9.4 to 9.8 show the correlation matrix of the described parameters.

These plots show the correlation between any 2 of the described measurements. Going from one

row to one column shows the correlation between those measurements. Blue represents positive

and red represents negative; the amount of circle filled in is the correlation coefficient.

The most important row is the first, which shows the correlation between the normalized sum

and various source parameters. The final column shows the correlation of source parameters with

time.

There is no consistent and strong correlation between the normalized population and any source

parameter. The first dataset contains high correlation coefficients, but the highest is with time.

Additionally, all of the parameters are correlated strongly with time.

The correlation present in the most number of datasets is the correlation between the normalized
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Figure 9.5: Correlation matrix for 200s Clean/9 Dip set.
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Figure 9.6: Correlation matrix for 300s Clean/9 Dip set.
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Figure 9.7: Correlation matrix for 50s Clean/Full Field set.
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Figure 9.8: Correlation matrix for 50s Clean/Half Field set.
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Field set.

number and moderator parameters. However, in 2 run sets that relationship does not show up. In

the 50s cleaning full field dataset (which did contain this correlation), the moderator temperatures

were consistent until the end of the run set, where the temperature increased over several runs by

400%. Figure 9.9 shows scatter plots of the normalized number, moderator temperature during

filling, and time. The increase in temperature did not have a strong effect on the normalization,

so there may not be a significant relationship.

The relationship between the normalized population, moderator temperature, and time in the

200s cleaning 1 step dataset show a significantly larger correlation than the 50s cleaning dataset.

This is shown in Figure 9.10. The average temperature of the moderator is significantly lower, but

the large correlation in this dataset and the lack of it in the 50s cleaning dataset suggests that the

correlations may just be accidental.

The correlation in the first two datasets may be related to aging of the new source. These
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datasets were taken after an initial short dataset and were the first major datasets taken with

the new source in production. Gas species in the guide being pumped out, contamination of the

deuterium, or para/ortho fraction may cause changes in the production, but were not tracked. The

learning period of using the new source may also contribute significant correlations with time.

Later datasets show no large trends in normalization as a function of source parameters, so

these parameters are not used in the analysis. Only monitor detector counts are used to correct

for spectral changes in the source production.
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CHAPTER 10

LIFETIME CALCULATION

10.1 EXPONENTIAL DECAY

Neutrons decay with a mean lifetime, τn:

Nn(t) = Nn,0exp(−t/τn). (10.1)

One convenient way to extract τn is to take pairs of observations at different points in the

exponential decay curve:

Nn,l = Nn,0exp(−Tl/τn)

Nn,s = Nn,0exp(−Ts/τn)

τn =
∆T

log(Nn,s/Nn,l)
,

(10.2)

where Nn,l is the number of neutrons (or a signal proportional to the number) in a ’long’ run

where UCN are held on the order of 1000 s, Nn,s is the number of neutrons in a ’short’ run where

UCN are held for less time, Tl and Ts are the long and short holding times, and Nn,0 is the initial

population.

Nn,0 could fluctuate before each measurement, so Nn,l and Nn,s are normalized by measuring

the production of the UCN source
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τn =
∆T

log(
Nn,s
Ms

/
Nn,l
Ml

)
, (10.3)

where Ms and Ml are normalization quantities measured with UCN monitors while the trap is

filling. Ms and Ml are described in detail in Section 9.7 and are given by

M = α×MSP + β ×M[OL/BA], (10.4)

where MSP, is the weighted standpipe monitor sum during filling, M[OL/BA] is either the weighted

sum of the old or bare monitor, depending on which monitor was operating correctly, α and β are

coefficients determined by linear regression between MSP, M[OL/BA], and Nn,[l/s]. The first two

datasets are normalized with the bare detector because there were some inconsistencies in the old

detector. The remaining 3 datasets (300s cleaning and 50s cleaning) were normalized with the old

monitor.

The number of neutrons, Nn,[l/s], is determined as follows:

Nn =

Ndip∑
i=1

(
t=T2i∑
t=T1i

+DTi − (T2i − T1i)× (RBKG + ∆RBKG(hi))

)
, (10.5)

where the outer sum is taken over the number of dips in the run (1, 2, or 8 where the cleaning

check dip is ignored). T1 and T2 are the beginning and ending times of the dip, the inner sum

is the integral of counts in the dip, DTi is the deadtime correction, RBKG is the background

measured either at the end of the run or at the cleaning check step (for 300s cleaning data),

∆RBKG(hi) is the background rate difference due to height, and hi is the height of the ith step.

The deadtime correction and background subtraction are described in detail in Section 8.4 and

Section 8.3 respectively.

∆T is given by

∆T = T̄s − T̄l, (10.6)
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where T̄s and T̄l are the mean arrival time of counts for the long and short run.

The mean arrival times are measured by taking the average arrival time of UCN events during

the counting phase of the experiment and subtracting off the average arrival time of the expected

background signal. This is described in detail in Section 11.5. Ts and Tl are defined by the time

between the last proton pulse from the source before the end of filling to the mean arrival time of

the UCN detection after the holding time has expired (t̄count − TEnd). This is to help correct for

any variations in timing and phase space evolution which may cause a shift in the mean arrival

time. Coincidence counts are used for this calculation.

10.2 OPTIMIZATION OF HOLDING TIMES

There exists an optimal holding time, in terms of the statistical uncertainty on the final lifetime

value given a fixed running time of the experiment. For simplicity, the total number of UCN from

all short runs and the total number of UCN from all long runs are summed up into two quantities

Nl =

∑
iNl,i/Mi

#l
Ns =

∑
iNs,i/Mi

#s
. (10.7)

The lifetime is given by Equation 10.2 where Nn,s and Nn,l are replaced by Ns and Nl, which

are normalized and averaged over the number of runs #s or #l. Ns,i, Mi, and Nl,i obey Poisson

statistics. The central limit theorem allows the uncertainty in Ns and Nl to be treated as Gaussian

because they are sums over many runs. Short holding time runs will take a fraction, fs, of the

total running time T . Each short run will take t0 seconds, which represents filling, cleaning, and

counting. Each long run will take t0 + ∆t seconds, where ∆t is the holding time. Equation 10.2

can be written as

τ =
−∆t

ln(R± δR)
, (10.8)

where R is the ratio of Ns to Nl. Using Gaussian error propagation for the log and simplifying, it

becomes
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τ = τ ± τ2

∆t

δR

R
. (10.9)

The number of long and short runs are given by

#l =
T × (1− fs)
t0 + ∆t

#s =
T × fs
t0

. (10.10)

Assuming the mean number of UCN counted are the same across runs, Ns and Nl are (approx-

imating with Gaussian statistics) given by

Nl =
Nl,i

Mi
± Nl,i

Mi

√
(1/Nl,i + 1/Mi)

#l
Ns =

Ns,i

Mi
± Ns,i

Mi

√
(1/Ns,i + 1/Mi)

#s
; (10.11)

combining,

δR

R
=

√
1/Nl,i + 1/Mi

#l
+

1/Ns,i + 1/Mi

#s
; (10.12)

substituting in Nl,i = Ns,iexp(−∆t/τ) and simplifying,

δτ = τ2/
√
T ∗ 1/∆t

√√√√ 1
Ns,iexp(−∆t/τ) + 1

Mi

1−fs
t0+∆t

+

1
Ns,i

+ 1
Mi

fs
t0

, (10.13)

which can be optimized in terms of the fraction of time allotted to short runs, fs, and the holding

time ∆t.

The following values are assumed to be representative of ordinary running conditions:

• τ = 880

• T = 350000 (4x24 hr run periods)

• Ns,i = 20000 (20000 UCN counts)

• Mi = 100000 (100000 counts in a normalizing detector)

• t0 = 460 (450 s for filling(150), cleaning(100), detection(200) + 10s of waiting)
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The optimal conditions are then fs = 0.195 and ∆t = 1846 s. A contour plot can be seen

in Figure 10.1. This corresponds to about 20% more short runs than long runs. The amount

of statistics given up for doing equal numbers is fairly small; The 2-dimensional scenario gives

a minimum of δτ = 0.953 s whereas assuming equal numbers and only minimizing in ∆t gives

δτ = 0.956 s at ∆t = 1869 s. Taking runs in equal numbers is simpler logistically and allows

for calculating lifetime values using adjacent pairs. Calculating τn with adjacent pairs may help

account for source spectral fluctuations; in the time between two paired runs the normalization

will be more stable than across the entire set of runs.

Unfortunately due to problems with the data acquisition hardware, runs were limited to 1759 s

(241 clock cycles at 800 ps per clock). Therefore the long runs were made as long as possible given

the timing limitations and the desired run structure. This typically meant that holding times were

1000 to 1400 s.

10.3 STATISTICAL BIAS

Averaging a large number of low statistics data can lead to biases, especially when the average is

weighted. The statistics of Equation 10.3 can be modeled as a ratio of two binomial processes.

The UCN source produces some large population, and each of those UCN has a small probability

of reaching the trap. Then each of those UCN has some probability of decaying inside the trap and

then being detected. Confidence intervals for the ratio of two binomial numbers has been studied

extensively. A large number of estimates for confidence intervals exist, but they are not exact and

in some places over or underestimate the uncertainty [40] [41]. Additionally, no unbiased estimator

for the ratio of two Poisson numbers exists [42].

Due to the difficulty in evaluating uncertainty and the lack of unbiased estimates, final life-

time values are calculated by measuring a lifetime for each short/long pair, taking the mean of

the lifetimes for each cleaning condition, and taking σ/
√
N for the uncertainty of each cleaning

condition.
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Monte Carlo simulations show that the bias from taking weighted means assuming Gaussian

statistics can be significant. Assuming a model where the initial population is given by a Poisson

distributed number (this assumes the rate of UCN filling the trap is constant) and β decay is

modeled by the binomial distribution where the number of trials is the initial population and the

probability of success (survival) is e−Th/τ . Then the lifetime is calculated in 3 ways: independently

summing the number of UCN in the long and short holding times and calculating a single lifetime,

calculating an average lifetime from the set of Monte Carlo runs, and calculating a weighted average

from the set of Monte Carlo runs weighted by 1/δτ2. The first method is free from bias because it

is a sum of many numbers. Due to the central limit theorem, the sums are normally distributed

and the ratio is therefore simple to handle. The first method reproduces the input lifetime within

statistics.

The results can be seen in Figure 10.2. The bias in using the unweighted average is significantly

less. At 20,000 UCN counted the effect is around 0.1 s whereas for the weighted average it is around

0.3 s. Historically, 10,000 to 20,000 UCN have been trapped per short run. The ultimate statistical

uncertainty of our result is around 0.7 s

10.4 FINAL CALCULATION

The average lifetimes are calculated as follows:

• Calculate τi using Equation 10.3

• For each cleaning and running condition, calculate τ̄ =
∑
τi/N

• For each cleaning and running condition, measure uncertainty as δτ̄ = σ/
√
N

• Calculate a final, weighted average τtrap =
∑

τ̄
δτ̄2 /

∑
1
δτ̄2

• Calculate a final average uncertainty δτtrap =
√

1/
∑

1
δτ̄2

The final weighted average is the most efficient use of the statistics. Each run set has hundreds

of thousands of UCN so a weighted average over high-precision results should not be significantly

affected by the statistical bias.
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Figure 10.2: Statistical bias as a function of number of UCN unloaded per short run. Blue points

are the unweighted average and red points are the weighted average. The gray band represents the

statistical reach in the 2016-2017 run cycle.

10.5 RESULTS

The results of the analysis are given below. Table 10.1 gives the lifetimes from the singles analysis,

which are the central value for the final lifetime result. It also gives the size of corrections for

background subtraction and deadtime correction. These are calculated by comparing the central

value with and without the correction.

Table 10.2 gives the lifetimes from the coincidence analysis. Because of the difficulty in assessing

the deadtime and pileup corrections, this value serves as a check on the central value from the singles

analysis. The size of the background correction is given.

The two analysis styles agree. The analyses are subject to different corrections. The sin-

gles analysis suffers from large background corrections (around 100 s), whereas the coincidence

analysis suffers from potentially large deadtime or pileup corrections (up to several seconds), and

significantly smaller background subtraction (up to several seconds).
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2016-2017 Singles

Correction [s]

Run Set τ [s] Background Deadtime χ2

200s Clean/1 Dip 878.4±1.9 -82 -0.3 0.23

200s Clean/9 Dip 877.3±2.1 -389 -0.03 0.01

300s Clean/9 Dip 876.6±2.2 -376 -0.03 0.17

50s Clean/Full Field 879.5±1.2 -165 -0.3 2.6

50s Clean/Half Field 875.8±1.1 -121 -0.3 2.3

χ2

NDF

Average 877.5±0.68 1.3

Table 10.1: Lifetime by set for the 2016-2017 Singles Analysis

2016-2017 Coincidence

Run Set τ [s] Background [s] χ2

200s Clean/1 Dip 877.7±1.8 -1.3 0.04

200s Clean/9 Dip 878.1±2.2 -4.4 0.13

300s Clean/9 Dip 877.0±1.9 -3.6 0.03

50s Clean/Full Field 879.4±1.3 -2.2 2.4

50s Clean/Half Field 875.3±1.2 -2.1 2.8

χ2

NDF

Average 877.4±0.69 1.3

Table 10.2: Lifetime by set for the 2016-2017 Coincidence Analysis
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CHAPTER 11

SYSTEMATIC CORRECTIONS

11.1 HEATED UCN UNCERTAINTY ESTIMATE AND UNCLEANED UCN

UNCERTAINTY ESTIMATE

Originally, a data-driven method was used to estimate the uncertainty due to the presence of

microphonic heating or uncleaned neutrons. This method relied on counting the population above

the cleaning height and extrapolating that population to form an upper bound on the shift in

τn [33] and estimated the effect to be <0.24 s in the case of heating and <0.07 s for uncleaned UCN

[31]. However, subsequent simulation work detailed in Chapter 13 has raised legitimate concerns

about the accuracy of this analysis. In particular, the simulations show that the assumption of

high efficiency counting of high-energy UCN may be incorrect. Nonetheless, a full Monte Carlo

simulation of these effects estimates the size of combined heating and insufficient cleaning at 0.03 s

with an uncertainty of 0.16 s.

The justification, details of the correction, and results are presented in Appendix A.1 for pos-

terity. However, the author no longer endorses the conclusions reached therein.

11.2 DISCRIMINATOR DEADTIME UNCERTAINTY

The discriminator counts individual photon signals from the detectors. A discriminator is subject

to deadtime: due to finite logic pulse width, 2 incoming PMT signals can arrive during an output

discriminator pulse. Any variation in the width of the output pulse could cause a systematic shift
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in the lifetime. By visual inspection, the discriminator which counted individual photon events

in the dagger had a width of 10 ns ± 20%. To first order, this uncertainty affects the estimated

deadtime correction linearly (that is, the number of counts added to account for deadtime is first

order linear in the deadtime).

The deadtime correction is described in Section 8.4. The Monte Carlo method detailed in Ap-

pendix A.2 is used to estimate the size of the effect given the uncertainty observed. To estimate

the systematic uncertainty, a scaling factor for the deadtime counts is generated using a normal

distribution centered at 1 with σ =0.2. The lifetime was measured for each sample of the scal-

ing factor. Using this error propagation method, the systematic uncertainty from the deadtime

correction is estimated to be 0.05 s.

11.3 SPECTRAL CORRECTION

Uncertainty due to normalization is not explicitly accounted for in this analysis. In principle, using

different normalization schemes can give some indication of the uncertainty involved. Due to the

paired nature of runs, the source is close to being the same between short and long holding times.

Adding in the spectral correction from Section 9.7 affects the stability of the population size, but

does not affect the lifetime significantly. Table 11.1 shows a comparison of a handful of different

normalization styles.

Style τn [s]

SP + BA or OL 877.37±0.69

SP only 877.57±0.67

BA or OL only 877.45±0.65

Table 11.1: Comparison of τn obtained using different normalization schemes. The standpipe

monitor (SP) views UCN above the trap height, the bare (BA) and old (OL) monitors view all

UCN at beam height.
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A rough estimate of 0.2 s uncertainty will be added, which is the worst case scenario of doing

or not doing the spectral correction.

11.4 DEPOLARIZATION

Ultracold neutrons can spontaneously depolarize during storage. This event causes a loss of neu-

trons; upon depolarization UCN are immediately attracted to the Halbach array and quickly scat-

tered or absorbed. An insufficiently strong holding field can allow large amounts of depolarization.

The effect of depolarization is estimated by varying the holding field inside the apparatus. The

adiabatic assumption is slightly violated for UCN inside the trap; a small part of their wavefunction

is in the opposite spin state. There is a small probability for a UCN to spontaneously flip spins

during tracking. An estimate for the functional form of the depolarization rate due to this effect

is [43]

1

τdep
∼ B−2

⊥ (11.1)

τtrap ∼ 1/

(
1

τn
+
λdepolB

2
0

B2
⊥

)
, (11.2)

which comes from tracking spins in a simulation of a magnetic trap.

Equation 11.1 does not take into account depolarization due to field zeros. At low fields, field

zeros are expected to dominate the loss. Steyerl [43] recommends use of this form above 5 mT in

holding field strength. Below this, the depolarization rate was simulated to be lower than suggested

from Equation 11.1. Using this form is then expected to give an upper limit. The lifetime in the

trap was measured as a function of holding field, at various field strengths between 0 and full

strength (approximately 6.8 mT). Lifetime values with field strengths at least 0.68 mT were fit to

Equation 11.2.

The fit was performed using both χ2 minimization and using Bayesian techniques with Markov

chain Monte Carlo with consistent results. The central value is used to estimate the size of the
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Figure 11.1: Lifetime in the trap as a function of holding field. Insert shows points which were fit

to Equation 11.2. Only data >= 0.68 mT were fit.

correction and the uncertainty on the fit is used to measure the systematic uncertainty. The

spectral dependence on depolarization is not measured, so the average depolarization rate, λdepol

is used to correct the lifetime as follows:

1

τn
=

1

τtrap
− B2

full

B2
set

λdepol. (11.3)

The average lifetime of all 5 run sets is then

τ̄n =

(∑ τn
δτ2

trap∑
1

δτ2
trap

)
. (11.4)

Assuming Gaussian errors, the derivative can be taken and the error in the fit propagated

through. The large effect from the half field data contributes significant uncertainty to the correc-

tion. Had the final data set been taken at full field, the expected uncertainty would be roughly

halved.

Fitting estimates the depolarization rate to be 1.2×10−7±1.1×10−7 s−1. This corresponds to
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a depolarization lifetime of 8.1 × 106 s. Using these values with Equation 11.4 and its derivative,

the estimated effect from depolarization is −0.17± 0.15 s.

11.5 PHASE SPACE EVOLUTION UNCERTAINTY

The distribution of UCN positions and velocities inside the trap can drift over time. This effect is

called phase space evolution. If a part of the UCN phase space is depleted, the other orbits inside

the trap can eventually re-fill it. This is especially noticeable when using the dagger detector to

clean halfway into the trap. The orbits that quickly reach the dagger are rapidly cleaned. However,

there are a large number of other orbits which take a longer time to be detected. If the trap is

only partially cleaned this way, then the undetected UCN can eventually re-populate the depleted

region of phase space. This re-population will cause a shift in the mean counting time of UCN and

therefore affect the storage time.

The mean arrival time is used to measure the storage time during each run. The lifetime is

linear in the storage time, so it is important to accurately determine it and estimate the uncertainty

of using the mean arrival time.

Phase space evolution could also occur when the UCN filling routine does not uniformly popu-

late phase space. Over the storage time, UCN will slowly populate initially difficult to reach areas

of the trap. This, too, can cause a shift in the mean counting time.

Backgrounds can also shift the mean arrival time. Because the backgrounds are constant, they

tend to shift the mean counting time towards the segments of data which have low signal. For

example, if there were 100s of counting before detecting UCN, the long runs would be expected to

have a lower mean arrival time than short runs because the mean arrival time of the backgrounds

contributes more significantly.

The background contribution can be corrected by subtracting off the expected mean arrival

times of a constant background process. The expected mean arrival time in Equation 11.5 for a

constant process would be halfway between the start and the end of the counting period.
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T̄ =
N∑
i=1

ti/N

E(T̄bkg) =
∆T

2
+ Ts

E

∑
bkg

ti

 = E(T̄bkg)×N =
∆T

2
×R∆T + Ts ×R∆T, (11.5)

where ti is the arrival time of an event, N is the total number of events, ∆T is the length of the

counting period, Ts is the start of the counting period, R is the background rate, and
∑

bkg ti

represents the sum of arrival times for the background process. The background subtracted mean

arrival time is then given by

T̄ =

(
N∑
i=1

ti −
∆T

2
×R∆T − Ts ×R∆T

)
/(N −R∆T ). (11.6)

This effect was investigated by measuring the background subtracted mean arrival times for

short and long storage runs and comparing to the programmed storage times:

δT̄ = (T̄l − T̄s)−∆Tprogram. (11.7)

Significant deviations from zero indicate the possible presence of phase space evolution. Averages

of δT̄ over the 5 run segments are presented in Table 11.2.

There is weak evidence at ∼ 4σ that the mean arrival times show phase space evolution. The

worst case scenario of an unknown systematic shift in ∆T̄ of 0.076 s is used to estimate the size of

the systematic uncertainty:

τi = Avg

(∑ (∆T̄i ± ε)
ln(Ns/Nl)

)
, (11.8)

where ∆T̄i is the holding time in the ith set using the mean arrival times, ε is the uncertainty in

measuring phase space evolution using the mean arrival times, Ns is the short population in each

run and Nl is the long population in each run.

79



Run Set δT̄ [s] σ/
√
N [s]

200s Clean/1 Dip -0.005 0.014

200s Clean/9 Dip -0.107 0.076

300s Clean/9 Dip -0.038 0.068

50s Clean/Full Field 0.009 0.016

50s Clean/Half Field -0.016 0.018

Average -0.037 0.009

Table 11.2: Measured difference between programmed and mean storage times

The average lifetime is given by the weighted average of τi. Using Gaussian error propagation

gives

δτ = ε×
∑(

τi
∆Tiδτ2

i

)
∑(

1
δτ2
i

) = ε× τ̄ . (11.9)

Inserting the values of τi, δτi, ∆T̄i, and ε gives an uncertainty of 0.06 s. Note that the shift in τ

is approximately 0.03 s, and is already included in the reported values from Section 10.5.

11.6 POSITION DEPENDENT BACKGROUND

The evaluation of the position-dependent background for the singles analysis can also contribute

uncertainty in the lifetime evaluation. This is especially true for the 9-step data because its signal

to background is much lower than the single step data.

Monte Carlo methods were used to estimate the uncertainty from position dependent back-

ground evaluation. The background fit was described in Section 8.3. The difference in the back-

ground rate at each height and at 380 mm was fit to a cubic function set to be zero at 380 mm.

The extracted parameter and its uncertainty was A = 8.0E-5± 2.3E-6 s−1mm−2.

This parameter is sampled as a Gaussian with σ given by the uncertainty in the fit. For each

sampled value of A, a final τn is calculated; the distribution of τn gives the uncertainty due to the
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Systematic Correction [s] Uncertainty [s] Method

Discriminator deadtime - 0.05 Data

Normalization - 0.2 Data

Depolarization +0.17 0.15 Data

Phase space evolution - 0.06 Data

Position dependent background - 0.005 Data

Residual gas upscattering [31] [44] [45] +0.16 0.03 Data

Insufficient cleaning and heating §18.1 +0.03 0.05, 0.15 Monte Carlo

Table 11.3: Summary table of systematic effects

uncertainty in A.

The estimated uncertainty from the position dependent background was ±0.005 s.

11.7 SUMMARY

UCNτ measured a raw lifetime value of 877.5±0.68 s. A systematic shift of +0.17 s due to

depolarization is needed and detailed in Section 11.4. An additional shift of +0.03 s due to

insufficient cleaning and heating is estimated via the simulation in the subsequent Section 18.3. A

final shift of +0.16 s [31] [44] [45] due to upscattering on residual gases is needed, but not detailed

in this work. Adding these corrections and summing their uncertainties in quadrature gives a final

measurement of τn=877.9 s±0.68 s(stat.)±0.3 s(sys.).
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CHAPTER 12

UCNτ OPTIMIZATION

12.1 SPIN FLIPPER TUNING

The UCN which exit the source are polarized such that they seek high fields. This is because they

pass through the PPM - a 7 T magnet which polarizes the UCN. Only UCN that gain energy

when moving into high field regions (High-field seekers) can pass through the PPM and its foil

membrane. High field seeking UCN cannot be trapped in UCNτ because these UCN would be

attracted to the walls and would quickly be absorbed or scattered. An adiabatic fast passage spin

flipper is used to flip the spins of UCN before entering the trap [30].

The AFP spin flipper produces a combination of radio frequency (RF) and static magnetic

fields. The static magnetic field (called the B0 field) is monotonically decreasing towards the trap

volume. The RF field has a frequency ω and is perpendicular to the B0 field. In a rotating reference

frame about the B0 axis rotating at ω, the observed field’s angle with the B0 axis goes through a

change of π radians. This slow change adiabatically flips the spins [46].

Both the B0 field and ω need to be at a resonance point to flip spins of UCN passing through

the spin flipper. In the 2015-2016 and 2016-2017 cycles, the B0 field was tuned at a fixed ω to

optimize spin flip efficiency. The current in the coil is stepped by hand and the rate in a spin-

sensitive detector is manually measured. The turning points of the spin flipper efficiency plateau

are identified and the final current for the run cycle is set at their midpoint. The in situ detector

can serve as a spin-sensitive detector by lowering it partway into the trap. The large magnetic
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Figure 12.1: Top: Rate in the main detector during tuning. Bottom: Rate in the main detector as

a function of B0 coil current.

trapping surface will act as a spin analyzer by consuming wrong-spin UCN. High field seeking

UCN will be attracted to the trap surface and will be removed. If spins are flipped, the detector

will measure a higher rate. The time constant for counting UCN at that height is tens of seconds,

so an equilibrium rate is reached relatively quickly. Figure 12.1 demonstrates a tuning run of the

UCNτ apparatus. The operating point was set at 4.1 A (the current monitor on the B0 coil only

has 0.1 A precision).

12.2 FILLING TIME SCAN

During loading, the trapdoor hole is the final restriction into the trap. Due to its small size

compared to the surface area of the Halbach array, filling the trap with UCN to saturation takes

several minutes.

The time constant was studied by filling the trap for a varying amount of time and measuring

the density as a function of filling time. Normalization is more difficult here because the shortest
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Figure 12.2: Filling time scan. Data was fit to a saturating exponential function

fills are 50 s, which is not sufficient to saturate the guide density and perform a normalization

using the monitor rates. Instead, the performance of the source is measured by taking the first

50 s of each fill. This assumes the source output does not change drastically from the beginning to

the end and is therefore only a rough normalization. Figure 12.2 shows data from 2016-2017; the

time constant was measured to be 70 s. We chose 150s of filling which was judged to be a good

tradeoff between density and time. This also matches the filling time in previous years’ running.

12.3 DETECTION TIME CONSTANT

The counting process is approximately exponential, meaning the rate in the dagger is proportional

to the population. At higher heights, the cross-sectional area of the detector is smaller compared

to the size of the trap. This causes the detection time constant to be significantly higher at higher

heights. At the cleaning height, the time constant is more than an order of magnitude slower than

at the bottom of the trap.

Detection time constants were measured by initially filling the trap with UCN, then counting
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Figure 12.3: Top: Time series of rate in detector as a function of time. Bottom: Time constant as

a function of height.

the population as if it were a normal run but stopping at a given height for several hundred seconds

to tens of seconds. At the end, the detector was dipped to the bottom to measure the remaining

UCN.

Figure 12.3 shows the curves superimposed on one another, as well as the time constant as a

function of height. The data was normalized so that counting curves overlap. The curves were fit

with double exponential functions, and only the short time constant is reported.

12.4 CLEANING TIME CONSTANT

The cleaning time constant for the 2016-2017 data was measured directly using the instrumented

cleaner. The cleaner detector and the giant cleaner were at equal heights as measured by a laser level

in situ. The cleaner detector had 4 PMTs, which were put into 2 channels of 2 each. Coincidences

were made with the same algorithm as the dagger detector, but with different cuts. Here, a 100 ns

initial coincidence window, a 10000 µs integration time of fixed length, and a cut of 2 PE is used.
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The data from the cleaner was not used to measure the lifetime, so no work was done to optimize

the cuts or study rate-dependent effects.

A time series of UCN events during cleaning is fit with a single exponential to measure the

cleaning time. The background rate of the detector was different when the detector was in cleaning

position and away, so data was only taken during the cleaning phase. Additionally, a group of UCN

is pushed by the trapdoor as it closes during the beginning of the storage period. This cuts out a

significant portion of the cleaning time constant measurement.

Figure 12.4 shows the fits and the data for the cleaning time constant. The time constant is

relatively short at 2.5 s. Cleaning time varied between 300 s to 50 s, all of which are at least 20

cleaning lifetimes. The surface area of the instrumented cleaner is relatively small compared to the

rest of the trap (∼10%). The giant cleaner covered roughly half the trap. The mismatch in size

puts uncertainty on how the time constant observed matches the actual cleaning time constant.

Because of the small size, its orbits may be cleaned preferentially and therefore bias it towards

shorter cleaning time constants. However, the short time constant and lack of UCN at longer times

suggests that the trap is effectively cleaned within the cleaning times used.

12.5 PHASE SPACE EVOLUTION

UCN orbits inside the trap can be non-ergodic and have long time constants to visit a given area of

the trap. This is especially evident when cleaning is enhanced by using the dagger detector. Orbits

that easily access the dagger are quickly counted, but a large number of orbits remain uncleaned

at the dagger’s level. This shows up as phase space evolution, where the absorption time for a

given spectral population is enhanced after storage for long periods of time.

This phenomenon was investigated using a cleaning condition where the dagger detector was

lowered halfway into the trap (25 cm from the bottom). This is lower than the nominal cleaning

height of the cleaners (approximately 38 cm). The dagger quickly depletes trappable UCN in

the energy band between 25 cm and 38 cm that can reach it, but leaves a large fraction of them
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Figure 12.4: Cleaning time constant as observed by instrumented cleaner. Fit to single exponential

with background.

untouched. During storage, the UCN in this energy band re-fill phase space uniformly which allows

them to be counted faster during a long holding run.

Figure 12.5 shows this effect. The data consists of runs with 200s of combined dagger and

absorber and a variable holding time between 20 s and 1000 s. The population at 25 cm is

normalized to the population in the whole trap and this ratio is plotted as a function of holding

time. As holding time increases, the number of UCN observed in the topmost counting position

increases as UCN slowly refill phase space.

In normal running, this is avoided by not using the dagger to clean.

12.6 PEAK 1 COUNTING TIME CONSTANT

The efficiency for counting UCN above the cleaning height using the dagger detector needs to be

known in order to perform the estimates in Section A.1. During normal running, no or very few

UCN are expected to be above the cleaning height. It is difficult to measure the counting time
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Figure 12.5: Population at 25 cm as a function of holding time.

constant of this population. However, taking runs where the cleaner is not inserted fully populates

this region so that the detection characteristics of UCN in Peak 1 can be measured.

Runs were taken where the trap was filled for 150 s with the cleaner up, followed by a 20 s

short holding time without cleaning, and a 300 s counting period at 38 cm. This populates the

energy band between 38 cm and 43 cm. After the counting period, the trap is unloaded using the

trapdoor and not counted in the dagger. Counting at 38 cm ensures that only UCN with energies

above the cleaning height will be measured. The results can be seen in Figure 12.6.

A large initial tail of UCN with energies > 43 cm is seen. This population is both cleaned

out by the detector and the raised cleaner. After this population leaves, then an exponential tail

of UCN with energies 38 cm < E < 43 cm is seen. This population was counted with a time

constant of 386 s. By taking into account β decay and integrating the counting curve, 1,500 UCN

are expected per run at energies above 38 cm. The population of UCN with E > 38 cm can be

used to predict the population with E < 38 cm. If the UCN in Peak 1 are counted with high

efficiency, then the predicted low-energy population should match the number of UCN in a short
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Figure 12.6: Arrival time for UCN with energy > 38 cm

lifetime run. Using the spectral model from Section 17.3, 4000 UCN would be expected in a short

holding time run.

However, short holding time runs with the same gate valve rate and source performance yielded

16,500 UCN per run. Inserting the detector at 38 cm only counts 24±10% of the energetically

available UCN in the trap. This likely means that the corrections from Section A.1 are incorrect

by at least a factor of 4.
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CHAPTER 13

OVERVIEW OF UCNτ SIMULATIONS

The detectors in UCNτ provide a wealth of information. However, detection of a UCN means

destruction of that UCN. This means that no information about the history of a specific neutron

can be gathered. The monitor detectors (which also destroy UCN) are the primary source of

information about the neutron population coming from the source.

However, after the trapdoor is closed no information about UCN can be gathered during storage.

Only the arrival times on the main detector can be used to estimate effects such as heating or

phase space evolution. The main detector counts all UCN that can reach it regardless of energy, so

information about specific energy bands is often mixed with other energy bands, making analysis

of phase space effects difficult.

In addition, the UCNτ trap uses magnetic reflections during storage which do not diffusely

reflect UCN. Sub-populations in phase space can have significantly long lifetimes in the trap,

which lead to phase space effects.

These aspects of the experiment make Monte Carlo simulations an attractive prospect: they

give the ability to have total knowledge of a UCN and its history while reproducing the experi-

mental conditions. This total knowledge allows estimates of collection efficiencies and decoupling

of different UCN populations. It also allows for sensitive estimates of losses inside the trap.

The goal of Monte Carlo simulations is to model the experiment in sufficient detail to both

reproduce data and predict the size of systematic effects. First the geometry will be modeled to
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reproduce the magnetic fields inside the trap. Then a detector will be simulated. Finally, a spectral

model will be used to represent the population inside the trap.

The model will be tuned by varying parameters until the optimal agreement between data and

simulation is reached. The tuned model will then be used to investigate systematic effects, efficien-

cies of detection, and model alternate scenarios to guide the development of future experiments.
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CHAPTER 14

TOY MODELS OF THE UCNτ TRAP

14.1 MARKOV CHAIN MODEL OF HEATING

A toy model of the heating process can help drive intuitive understanding of the process and guide

the interpretation of the results. The heating process is a kind of random walk. UCN gain or

lose energy on every interaction with the wall and can eventually be evaporated out of the trap.

Because the cleaners are raised by 5 cm after cleaning, there is a threshold below which heating

will not significantly affect the lifetime. However, when the tail of the heated distribution begins

arriving at the raised cleaner height, the shift in lifetime becomes significant.

The trap can be modeled using a Markov chain. A Markov chain is a system composed of a set

of states where the next state is determined only by the current state. The transition probability

from one level to another level is described by the Transition Matrix P [47]. Pij describes the

probability of state i transitioning to state j during the next step. A Markov chain can be absorbing

if it contains a state a where all of the probabilities Paj (a 6= j) are 0.

The trap will be described by a Markov chain containing N states representing N energy levels

in the trap between 0 and 43 cm. Additionally, there are 2 absorbing states: one for β decay

which has a constant transition probability for every state, and one for absorption on the cleaner

during storage. The cleaned absorbing state is reached by heating from the 43 cm energy level.

Each step in the chain is a reflection on the wall, which occurs approximately every 1 s. During

each wall bounce, a UCN will be modeled as having 1
2 probability of keeping its initial energy, and
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1
4 probability of gaining or losing 1 energy level. This is expected to reproduce the microphonic

heating behavior; it has 1
4 probability to be in phase or π out of phase, where it will get a positive

or negative kick respectively. Otherwise, it will be out of phase and will not get kicked.

For each trapped UCN state above 0 energy, the entries in P are Pi,i = 1
2(1 − pβ), Pi,i−1 =

1
4(1 − pβ), Pi,i+1 = 1

4(1 − pβ), Pi,decay = pβ. The 0 energy level cannot lose energy, so instead it

has P0,0 = 3
4(1− pβ) and P0,1 = 1

4(1− pβ).

The matrix then reads

3
4(1− pβ) 1

4(1− pβ) 0 0 0 . . . 0 pβ

1
4(1− pβ) 1

2(1− pβ) 1
4(1− pβ) 0 0 . . . 0 pβ

0 1
4(1− pβ) 1

2(1− pβ) 1
4(1− pβ) 0 . . . 0 pβ

...
...

...
. . .

...
...

...
...

. . . 0 1
4(1− pβ) 1

2(1− pβ) 1
4(1− pβ) pβ

. . . 1 0

. . . 0 1


.

(14.1)

Given the transition matrix P and an initial population vector u, the population vector after

n transitions is given by [47]

u(n) = uP n, (14.2)

where u is a row vector andui is the probability of being in state i at the beginning. To simulate

the trap population, ui is ∝ E, or 0 if E >38 cm.

Different heating scenarios can be simulated by expanding or shrinking the number of energy

levels; since the UCN will only jump up or down one level, the level spacing describes the strength

of heating. Short and long holding runs can be simulated using Equation 14.2 with n =20 steps

for a short holding run and n =1400 steps for a long holding run. The lifetime is given by

τ =
nlong − nshort

log
(

1−us,lost−us,β

1−ul,lost−ul,β

) . (14.3)

The lifetime as a function of energy transfer can be seen in Figure 14.1. The threshold nature
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Figure 14.1: Trap Lifetime as a function of ∆E per bounce in the toy model.

of the process is evident; below a certain amount of heating there is little effect. As the population

between 38 and 43 cm is increased, the probability of being absorbed also increases. At some point,

the tail of the heated distribution begins being eliminated during storage and the lifetime starts

dropping dramatically. This means that there is a large amount of room to safely operate the trap,

but it’s not necessarily true that if heating is tolerable at one level that small increases in heating

will also be tolerable.

14.2 PHASE SPACE EVOLUTION

The phase space evolution can be modeled as a simple counting process. Instead of counting UCN

as a Poisson process, the arrival and death times are generated from exponential distributions. A

2-peaked run is modeled using 2 exponentials, one with time constant 100 s truncated at 20 s from

the end of the holding time, and another one with time constant 7 s starting 20s after the end

of the holding time. Additionally, random death times are generated at τ = 877.7 s. A UCN is
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Measurement Value

∆Thold -0.176 s

∆τ (using T̄ ) <0.005 s

∆τ (using Thold = 1380) -0.1 s

Table 14.1: Results of the phase space evolution toy model

counted if its exponentially distributed arrival time is less than its death time. UCN are counted

for 120 s in total; UCN which arrive after 100 s into the 2nd dip are not counted.

A shift in the lifetime could be expected if a subset of the population is subject to more β

decay during the counting period. This shift is due to the holding time no longer describing the

real holding time.

Phase space evolution is modeled by modifying the population sizes in the long run. The

population size of the 1st peak is decreased by 1% of the total and the population size of the 2nd

peak is increased by 1% of the total. The short run has 10% of UCN in the 1st peak and 90% of

UCN in the 2nd peak. A long run with phase space evolution will have 9% of the UCN in the 1st

peak and 91% of the UCN in the 2nd peak.

The lifetime is calculated by taking the sum of counted UCN and using the mean arrival time

of UCN (T̄ ). Comparing the lifetime of UCN with and without phase space evolution gives an

estimate of the effectiveness of the phase space evolution correction. Results are given in Table

14.1. At least in the toy model, using the mean arrival time corrects for the effects of extra β decay

due to phase space evolution.
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CHAPTER 15

UCNτ MAGNETIC FIELD EXPANSION

The visible geometry of the trap for UCN is determined by the magnetic fields from the Halbach

array. Summing the fields from all of the magnets in the trap is time consuming, so an expansion

is used instead. The expansion treats the field as an ideal Halbach field which decays exponentially

along the normal to the bowl surface. Additionally, there are sinusoidal ripples in the field due to

the finite thickness of each magnetic stripe.

The magnetic field is given by [48]

B =
4Brem

π
√

2

∞∑
n=1

(−1)n−1

4n− 3
(1− e−knd)e−knζ(sinknηη̂ + cosknηζ̂), (15.1)

where Brem is the remnant strength of the permanent magnets, kn = 2π(4n−3)/L, L is the period

of the Halbach pattern, and d is the magnet thickness (1”). The sum is typically truncated after

3 terms. Brem was taken to be 1.35 T (from empirical measurements), and L was taken to be

51.114 mm, which matches the falloff of the real Halbach array.

ζ, η, and ξ are the local bowl surface coordinates. ζ is the normal distance to the surface, ξ is

the tangent in the direction of the holding field, and η is the other tangent. The bowl surface is

made up of 2 torus patches of different radii joined at the bottom. The coordinates are then given

by

ζ(x, y, z) = r(x)−
√

(
√
z2 + y2 −R(x))2 + x2 (15.2)
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and

η(x, y, z) = r(x)× atan

(
x√

z2 + y2 −R(x)

)
; (15.3)

there is no dependence on ξ so it is not given. R(x) and r(x) are the major and minor radii of the

tori, respectively. The major and minor radii are either 1.0 or 0.5 m on either side of the x = 0

plane.

R(x) and r(x) are defined using sigmoid functions

R =
1

2
+

1

2
/(1 + exp(−κx)) (15.4)

and

r = 1− 1

2
/(1 + exp(−κx)), (15.5)

where κ = 1000 is the transition region size, approximately 5 mm on either side of x = 0. R(x)

and r(x) were chosen to be smooth functions of x to avoid step-functions at the x = 0 plane.

Additionally, the sum of r(x) + R(x) is constant. Using step functions deteriorated the energy

conservation in the integrator by several orders of magnitude. Step functions caused large jumps

in energy whenever a UCN traversed the x = 0 region in high field.

The holding field is given by

Bξ = B0
r +R

ρ
ξ̂, (15.6)

where ρ =
√
z2 + y2. The total field is

B = Bη(ζ, η)η̂ +Bζ(ζ, η)ζ̂ +Bξ(y, z)ξ̂. (15.7)

The UCN are assumed to be in the adiabatic limit, so that their polarization is always main-

tained in the direction of the local B-field. In that limit, the potential is given by

U = −µ‖B‖+mgz = −µ
√
B2
η +B2

ζ +B2
ξ +mgz, (15.8)
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where µ is the neutron magnetic moment. The minimum potential energy was subtracted off and

was found at

rmin = (0, 0,−1.46441366913). (15.9)

The forces were found using Equation 15.8 by taking the gradient in Cartesian coordinates.

The derivatives of the field strength are

∂‖B‖
∂[x, y, z]

=
1

‖B‖

(
Bζ

(
∂Bζ
∂ζ

∂ζ

∂[x, y, z]
+
∂Bζ
∂η

∂η

∂[x, y, z]

)
+Bη

(
∂Bη
∂ζ

∂ζ

∂[x, y, z]
+
∂Bη
∂η

∂η

∂[x, y, z]

)
+Bξ

(
∂Bξ
∂ζ

∂ζ

∂[x, y, z]
+
∂Bξ
∂η

∂η

∂[x, y, z]

))
.

(15.10)

It is therefore easy to calculate both the total potential and force by summing the appropriate

sine/cosine terms coming from Equation 15.1 and multiplying by the appropriate partial derivatives

of the local coordinates.
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CHAPTER 16

SYMPLECTIC INTEGRATION

16.1 SYMPLECTIC INTEGRATION SCHEME

UCN are tracked in the magnetic field using a symplectic integrator. Symplectic integrators are

believed to have good long-term stability in phase space due to their conservation of geometry [49].

UCN are tracked for 1500 s or more, so the stability of their distribution in phase space is important.

An explicit, fourth order algorithm is used [50] (first published by Forest and Ruth [51]), which is

reproduced in Table 16.1.

Symplectic Integration Scheme

t0,x0,p0;H = T (pi) + V (xi)

For i=1,2,3,4:

pi = pi−1 + biδt× F (xi−1, ti−1)

xi = xi−1 + aiδt× P (pi−1)

ti = ti−1 + aiδt

Table 16.1: Symplectic integration scheme

The Hamiltonian is assumed to be of the form T (p) + V (x), F (x, t) = −∇xV (x) is the force

at x and time t, and P (p) = ∇pT (p). The constants ai, bi are chosen to give a symplectic map;

both Forest and Candy give the same analytic coefficients. In principle there are many (thousands)

of solutions for the a’s and b’s that give symplectic integration [52]. McLachlan and Atela give

numerically optimized a’s and b’s that are observed to conserve energy better than the analytic

99



constants. Those a’s and b’s are used in this work and are optimized to more digits than double

precision, so are sufficiently precise.

Higher order integration schemes (N even) can be constructed using the coefficients of the N−2

order scheme [53]. However, only the optimized coefficients for the 4th order symplectic scheme

were used.

16.2 TEST OF SYMPLECTIC INTEGRATOR ON FIELD EXPANSION

Convergence of energy conservation of UCN trajectories can be seen in Figure 16.1. Three general

features can be observed: 1) convergence in ∆E as some power in δt, 2) local deviations in energy

near array bounces, 3) and long-term shifts in energy.

The first behavior is expected from a symplectic integration scheme; the error of the integrator

is O(δtn+1) [50]. The actual convergence for the Halbach array potential is slightly faster; this is

possibly due to the effect of feature 3.

Local deviations in energy conservation in high-field regions are also expected. The symplectic

integration does not solve the given Hamiltonian exactly, but is an exact solution to a nearby

Hamiltonian [54, Chapter 9]. This gives it good long-term stability since it is an exact solution,

but the solutions may be more different in regions of large gradients.

The third behavior is possibly due to numerical instabilities of the forces and potential in high-

field regions. Steps in the energy are associated with wall collisions and were seen to be worse

when the field was modeled using a step function for the major/minor radius change at x = 0.

These steps at collisions give the drift from the mean value.

16.3 CONVERGENCE STUDIES

Due to the chaotic nature of the trap, convergence is difficult to study. Other neutron traps have

had similar issues where the escape time of a given neutron does not converge with step size [55].

This means that an observable of any given UCN may not converge with step size. However, an
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Figure 16.1: Energy Conservation of the symplectic integrator for UCN trajectories
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δt [ms] Number of Terms

1 2 3 4 5 6

0.25 383445

0.5 142465 383397 383249 383422 383220 383636

1.0 383452

2.0 383439

Table 16.2: Convergence using % of chaotic trajectories

ensemble average may be expected to converge with step size. The average energy conservation is

at or better than 1 part per billion for a timestep of 0.5 ms. Estimates of the systematic effects in

UCNτ used a timestep of 0.5 ms and took 3 terms in the field expansion.

Lyapunov characteristic exponents (LCE, defined in Section 20.1) were used as a coarse quan-

tity to study convergence. Lyapunov exponents measure the chaotic nature of trajectories. The

timestep and number of terms in the field expansion were varied and the distribution of Lyapunov

exponents were studied. Changing the timestep changes the nearby Hamiltonian that is solved,

which affects the exact evolution of a given initial condition. However, if the distribution does not

qualitatively change then the behavior of the trap is converged at some level. The number of UCN

with Lyapunov exponent > 0.75 (considered chaotic trajectories) was calculated as a function of

either δt or number of terms in the field expansion. Results are given in Table 16.2.

The only significant difference is the change from 1 term to more than 1. With only one term

in the field expansion, the number of chaotic trajectories is more than halved. Otherwise, the

number of chaotic trajectories is within error (assuming Poisson statistics). This can be seen in

Figure 16.2 where the histograms of LCE for simulations with N ≥ 2 lie on top of each other.

Another way to look at this data is to histogram the Lyapunov exponents of the most precise

simulation with lower-precision simulations. If the qualitative shape changes then the system is

not yet converged. Results can be seen in Figure 16.3 and Figure 16.4. Qualitatively, the regular

trajectories (near 0) are unperturbed, and the chaotic trajectories tend to get mixed up. However,
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Figure 16.2: Convergence of results in N

the shape of the distribution does not change significantly by adding more terms or by reducing

the step size. Only going to 2 terms in the expansion changes significantly. The chaotic behavior

of UCN inside the trap is converged at large time steps and at low numbers of terms.
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Figure 16.3: Convergence of trap in δt
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CHAPTER 17

SIMULATION OF 9-STEP DATA

17.1 SIMULATION SCHEMATIC

The UCNτ experiment will be simulated by tracking UCN trajectories inside of the trap from an

initial birth time to their death either due to β decay, absorption on a cleaner, or absorption on

the detector. UCN will be created inside the trap due to the inability to simulate the trapdoor

region accurately using the field expansion. They will be created using an effective spectrum which

describes their distribution in energy and phase space. The geometry of the cleaners and detectors

will be taken from the apparatus. The cleaners will be simplified to have a uniform efficiency

(defaulting to 100% efficient). The detector will be modeled using a quantum multilayer formula.

The simulation parameters will first be tuned using a large dataset, then validated on an

independent dataset. After tuning, phase space evolution, heating, and cleaning will be simulated.

17.2 DETECTOR SETUP

The detector is modeled as being in the y = 0 plane. The profile of the detector is bounded from

below by the shape of the array, in the ±x direction as a box and in the +z direction as a box.

The bottom of the dagger is defined by ζ ′ = 0 where ζ ′ is the local bowl coordinate ζ offset in

z by the position of the dagger detector above the array. The midline of the detector is offset at

x = −15.24 cm. The side edges of the detector are located at 20 cm from this line, giving a total

width of 40 cm. The upper edge of the detector is 20 cm from the lowest point on the ζ ′ = 0 curve
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at x = 0.

The aluminum housing of the detector is also simulated. The aluminum housing is modeled

as a 100% diffusive reflecting surface. The housing begins at the top edge of the active detector

area. The housing is composed of a trapezoidal bottom section and a rectangular top section. The

height of the bottom trapezoid is 14.478 cm with a bottom width of 40 cm and upper width of

69.215 cm. The upper section has width 69.215 cm and height 12.192 cm.

The dagger was simulated to move with a velocity of 49
13 cm s−1, which is the approximate mean

velocity of dagger actuation. The actual detector has acceleration and deceleration profiles which

were not simulated.

Every time a tracked UCN passes the y = 0 plane, the approximate x and z crossing position is

calculated from the current and previous simulation step. The ζ ′ is calculated and checked against

the profile of the dagger. Absorption or reflection is then simulated if the UCN is detected crossing

the profile of the detector or the housing.

Reflection is modeled as being 100% diffusive. The new UCN momentum direction is distributed

as in Lambertian reflection. The distribution of momentum direction is ∝ sin(θ)cos(θ).

The detector surface is modeled as a multilayer surface. A UCN interacting with an absorbing

multilayer surface is treated in Golub [23, Appendix 4]. The absorption probability µ(E⊥) is given

by

µ(E⊥) = 1− |R|2. (17.1)

R is

R =
−M̄21

M̄22
(17.2)

and M̄ = M̄N . . . M̄2M̄1 is the product of the matrices M̄n for each boundary:
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Figure 17.1: Loss probability on the detector as a function of perpendicular energy. UCN typically

have E⊥ < 10 neV.

M̄n =
1

2

(1 + γn)ei(kn−1−kn)zn (1− γn)e−i(kn−1+kn)zn

(1− γn)ei(kn−1−kn)zn (1 + γn)e−i(kn−1−kn)zn

 , (17.3)

where kn =
√

2m
~2 (E⊥ − Un), γn = kn−1/kn, zn is the location of the nth boundary, and Un =

V + iW is the complex potential of the material. The imaginary part of the potential encodes

the loss probability. The detector is modeled as a surface with a layer of 10B with thickness L10B

(approximately 5-10 nm) followed by a layer of ZnS with thickness 10µm. The loss probability as

a function of energy is given in Figure 17.1.

If a UCN is not absorbed, it is reflected 100% diffusively. The ZnS crystals on the detec-

tor surface are a polycrystalline powder with a particle size of approximately 10 µm [32]. The

polycrystalline nature is expected to give totally diffusive scattering.

The detector was damaged in the experiment after dropping it onto the array several times.

An additional modification of the loss probability µ was added to account for the damage. The

absorption probability is scaled linearly with ζ ′, so that at ζ ′ = 0, µ = 0 (the bottom of the
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detector), and at ζ ′ = ζcut, µ = µ(E⊥). The absorption probability is

P (E⊥, ζ
′) =


ζ′

ζcut
× µ(E⊥) 0 ≤ ζ ′ < ζcut

µ(E⊥) ζ ′ ≥ ζcut

. (17.4)

The two cleaners in the trap are defined as shapes in the z = zclean plane. zclean is either 38 cm

for cleaning or 43 cm for storage. For the large cleaner, the active area is the half-plane y > 0.

For the active cleaner, the area is a rectangle −0.3897945 < x < 0.2706055;−0.7997415 < y <

−0.4441415. The active cleaner was not simulated for the majority of studies; the smaller area

was assumed to not contribute significant cleaning. If a UCN transits the z = zclean plane, the x, y

position is checked against the cleaners. If the cleaners were hit, then the UCN was absorbed.

17.3 SPECTRUM SETUP

UCN are created inside the trap near the trapdoor. They are created at the minimum potential

height (z = −1.46441366913) in a 15 cm×15 cm box centered at the origin.

A superthermal UCN source is expected to create UCN with density ∝ E [23]. The conditioning

of the guides is expected to weight the population towards higher energies. The density of UCN

as a function of energy is assumed to be a power law, ρ ∝ Ex.

The angular distribution of UCN exiting the open trapdoor is unknown. The magnetic fields

and combination of specular and diffuse scattering inside the transition region is not simulated.

The highest portions of the transition region are largely diffuse, so the phase space density was

assumed to look like a lambertian which gives equal brightness in every direction. The cosine term

in the distribution was additionally weighted by a power y to give the spectrum more forward-

directedness.

Low-energy UCN can possibly escape the trap quicker than high-energy UCN. Low energy

UCN spend more time closer to the trapdoor, so potentially have a higher chance to escape each

time they cross the trapdoor. An energy cutoff was added to the spectrum to account for this
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possibility.

The phase space density is given by

ρ(E, θ0) ∝ Θ(E − Ecut)E
xsin(θ0)cos1+y(θ0), (17.5)

where Θ is the Heaviside step function, E is the energy of created UCN, Ecut is the low-energy

cutoff, x is the power scaling of the spectral density, θ0 is the angle with respect to +ẑ, and y is

the forward-directedness scaling. Because the loading process is not simulated, this phase space

distribution is expected to match the distribution of UCN inside the trap after the trapdoor is

closed.

To simulate the effects of loading, UCN were created with the truncated exponentially dis-

tributed loading time found in Section 12.2. After birth, they were tracked for their filling time

before the experiment time began at t = 0, corresponding to the trapdoor closing time. During

this time they can evolve in phase space and be cleaned.

17.4 χ2 COMPARISON OF HISTOGRAMS

The 5 parameters (L10B, ζcut, Ecut, x, y) were varied to minimize the χ2 between data and simula-

tion histograms. Histograms of the rate in the 9-step runs were used to tune the simulation. In

order to avoid expensive simulations, the data was re-weighted from an initial, general dataset.

The initial dataset used x = 1, y = 0, Ecut = 0.5 neV. Each UCN was weighted with an additional

factor to obtain the phase space density in Equation 17.5.

The simulation output contained the first 50 arrival times and perpendicular energies on the

dagger for each UCN. Each UCN was tracked, and every time it hit the dagger the time, location,

and perpendicular energy was stored. The UCN was then reflected diffusely and tracked until the

next dagger hit.

The raw data produced in this way can be used to simulate different detector surface models.

During post processing, the absorption process is simulated and the first hit to be successfully
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absorbed is recorded into an arrival time histogram. In this way, the results can be re-used and

the χ2 space mapped out quickly.

The χ2 was calculated on a bin-by-bin basis comparing a weighted histogram from the simu-

lation and an unweighted data histogram [56]. This method is used in the ROOT data analysis

framework to compare histograms.

The minimum χ2 was found using the Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES) minimization technique [57]. This technique is expected to perform well on noisy

objective functions with many local minima. The χ2 of 2 histograms is likely to be noisy and

with many minima because the underlying data is discrete. Changing the parameters of the model

will change the contents of the bins in discrete steps, so small local maxima and minima may be

present.

The minimum search was conducted in 47 trials. The lowest χ2 value of all the trials was chosen

as the best fit. Approximately 2/3 of trials converged to a distinct point with a χ2 0.01 higher.

Each trial had a population size of λ = 8 and terminated at a relative difference of 1× 10−6 in χ2.

The minimum was found at L10B = 5.8 nm, ζcut = 1.6 cm, Ecut = 7.6 neV, x = 1.3, y = 0.26 at a

value of χ2/NDF = 17.3. A comparison of the data and Monte Carlo simulations can be seen in

Figure 17.2.

The χ2 contours were explored by varying a pair of parameters around the minimum and

mapping out the χ2
min + 1 boundaries in a grid search. The results can be seen in Figure 17.3.

Most parameters are seen to be correlated, especially with parameters of like type (spectrum to

spectrum or detector to detector). The largest correlation is between L10B and ζcut. As the Boron

thickness increases, the cutoff decreases so that the time constant is not changed significantly

during the middle counting steps. The scaling of forward-directedness y and Ecut is also seen to

be about as correlated. This is likely due to the last peak. A lower population in the last peak

due to a higher cutoff can be counteracted by more UCN at shallow angles. These high θ0 orbits

are more likely to be counted during the last step than orbits with low θ0.
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Figure 17.2: Comparison of 2016-2017 data with best-fit Monte Carlo simulations

The simulation is seen to prefer a high-energy enhanced spectrum (x > 1) that’s forward-

directed (y > 0). It also prefers a thin layer (the nominal thickness was approximately 10 nm),

and a damaged region that’s roughly consistent with the damage to the detector of ∼1-2 cm.

The optimum values of the 5 parameters were additionally used on 3-step data for validation.

The 3-step data was simulated without further optimization and qualitatively agrees with the data.

Initial trials of the 3-step data revealed the time constant of the final step being too slow. This

prompted the inclusion of the damaged portion of the detector. UCN strike the detector at a

higher ζ ′ during the final step, so the damaged portion allows UCN to be drained slower during

the higher steps and faster on the last step. However, no optimization was done on this dataset.

The results can be seen in Figure 17.4

The χ2/NDF is ∼76 for the 3-step data. The Monte Carlo simulation lags behind the data,

hinting at timing differences driving deviations. Additionally, the data histogram is a composite of

153 runs taken over several weeks. Spectral variations are expected between runs due to degradation

or source rebuilding. The detector actuator may have been reset which can subtly change the
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Figure 17.4: Comparison of 2016-2017 data with Monte Carlo simulations using optimum 9-step

parameters.

position. Additionally, any timing variations or friction in the actuation can cause non repeatability

of actuation. These factors may compound together and cause difficulty in matching the data well.

However, qualitatively the simulation matches the draining time constants and population sizes

of the data and also captures the draining time constants and population sizes when the latter 7

steps are compressed into one.
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CHAPTER 18

SIMULATION OF HEATING AND CLEANING EFFECT ON τ

18.1 LIFETIME MEASUREMENT SETUP

Simulation of a 0.7 s precision dataset takes approximately 2000 CPU hours. Simulating higher

precision (<0.1 s) becomes computationally expensive quickly. However, Monte Carlo techniques

allow complete knowledge of UCN history and therefore a quicker calculation of the shift in lifetime.

The shift in lifetime can be estimated by measuring the number of UCN which are lost during

storage. Because the number of UCN being lost is measured, the statistical uncertainty comes

from the size of the lost population and not the measurement of τ . The effect of uncleaned UCN

or heated UCN is estimated using the lost population.

Heating was studied by simulating a full lifetime run with comparable statistics to the 2016-2017

dataset (approximately 5 million UCN in the short run). The shift in lifetime is given by

δτ = τ − τ ′ =

[
∆T/log

(
Nshort

Nlong

)]
−
[
∆T/log

(
Nshort

Nlong +Nlost

)]
, (18.1)

where Nshort is the sum of counted UCN in the short run, Nlong is the sum of counted UCN in the

long run, and Nlost is the number of UCN lost during storage which would not β decay before the

beginning of the counting period. The β decay time for each UCN is determined at the beginning

of the run so it is easy to determine which UCN would have otherwise decayed. The uncertainty

in δτ can be found via typical Gaussian propagation techniques.

Cleaning was studied by simulating only UCN above cleaning height and counting the number of
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UCN which were destroyed during storage. In this simulation β decay was turned off to increase the

number of neutrons that can be simulated per CPU-hour. The number of UCN lost during storage

is then interpreted as a shift in the initial population. The shift in lifetime for this simulation is

given by

δτ = τ −∆t/log

(
1

exp(−∆t/τ)(1− f)

)
, (18.2)

where f is the fraction of the initial population lost during storage and is given by

f =
Nlost

Ncounted
' Nlost

Nsimulated
× Ncleanable

Ntrappable
, (18.3)

where Nlost is the sum of UCN lost during storage on the cleaner, Ncounted is the number of UCN

which would be counted in a short storage run given the simulated population size, Nsimulated is the

total number of cleanable UCN simulated, and the fraction Ncleanable

Ntrappable
is the sum of the spectrum that

is cleanable over the sum of the spectrum that is trappable. Only cleanable UCN are simulated,

so the fraction Ncleanable

Ntrappable
is taken from integrals of the spectrum (Equation 17.5).

18.2 HEATING MODEL

One possible source of heating is microphonic vibrations of the array. Heating via microphonic

vibrations is added to the simulation by using a time-dependent wall potential. Time dependence

is added to the symplectic integrator by adding time into an extended phase space. For some

potentials, this simplifies to stepping time like the x, y, z coordinates during each integration step

[50]. To simulate vibration, the x, y, z coordinates are shifted as a function of time, becoming

x0 + δx(t), y0 + δy(t), z0 + δz(t). The gravitational z coordinate is not shifted.

The vibrations δx(t), δy(t), δz(t) are obtained from accelerometer data on the vacuum vessel. A

40 s long trace of ax(t), ay(t), az(t) was used to calculate the displacements. The accelerometer data

was taken by a third party in 3 configurations: one background and 2 foreground (with different

pieces of equipment on). The Fourier Transform of the accelerometer data was taken. The phase of
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a strong background line (29.575 Hz) was determined in each trace. The phase for each trace was

then adjusted so that the phase of the 30 Hz line agreed between datasets. Then the low-frequency

components (<5 Hz) were filtered out by setting their frequency bins to 0 amplitude. Then a double

time integration was performed in the frequency domain. A time window was defined between the

lowest observed total displacement and the last instance of a total displacement less than 30 nm. A

windowing function was then applied so that vibrations gradually fade in and out at the beginning

and end of the time window. An approximately 28 s long x, y, z displacement trace was obtained.

The displacements δx(t), δy(t), δz(t) were then linearly interpolated between sampling points and

cyclically sampled during the simulation. The largest displacements are approximately 1 µm.

The coupling of vibration of the magnetic fields to UCN heating depends on the perpendicular

momentum of an incident UCN, the vibration phase, and frequency. The heating response was

measured by dropping UCN from a defined height at (0, 0, zdrop) and varying the height, phase,

and frequency. The highest ∆E for each height and frequency gives the response. The largest

response is at ∼30 Hz; the maximal frequency is lower as the UCN energy is lower. There is also

a smaller lobe due to multiple oscillations during transit at 150 Hz. In general, frequencies higher

than 100 Hz are unimportant to the heating. Low frequency vibrations are problematic. The

results can be seen in Figure 18.1.

18.3 CLEANING AND HEATING RESULTS

The cleaning was simulated using 4 different scenarios: 50s cleaning with 100% absorption per

bounce on the cleaner or 50% absorption per bounce on the cleaner, 200s cleaning at 100% ab-

sorption, and 50s where the lowered cleaner height was 3 cm lower than nominal (with the same

43 cm raised height).

Heating was simulated using the measured accelerometer data, measured accelerometer data

amplified by 40 times, and accelerometer data amplified by 80 times. Results are given in Table

18.1.
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Figure 18.1: Maximum energy gain during one bounce with a 5µm sinusoidal vibration

Set δτ [s] Statistical Uncertainty [s]

Cleaning

100% Absorption 0.034 0.0006

50% Absorption 0.050 0.0007

200 s Cleaning 0.0017 0.0001

35 cm Cleaning 8×10−5 3×10−5

Heating

Accelerometer 0.031 0.005

x40 (∼ 40µm) 0.151 0.009

x80 7.68 0.06

Table 18.1: Shift in τ due to insufficient cleaning or heating during storage
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The shift in τ is small for nominal cleaning; it is most likely less than ∼0.05 s. The cleaner

is fairly thick and made of polyethylene (which has a slightly negative potential). The efficiency

of a polyethylene absorber is expected to be close to unity for UCN E > 5 neV [58]. The exact

efficiency depends on details of the surface (contamination and geometry) and is unknown for

the cleaner. UCN with energy above the raised cleaner have 5 neV of total kinetic energy at the

cleaning height. Their perpendicular energy is < 5neV which may cause a slightly lower than unity

absorption efficiency.

Increasing the cleaning time to 200 s reduces the loss of UCN during storage by a factor of

20. Maintaining the cleaning time of 50 s and lowering the cleaning height to 35 cm reduces by

another factor of 20.

The effect of heating is also small. The measurements were taken on the vacuum jacket so

there is a possibility of larger vibrations on the array itself, or alternate modes such as rotations.

Further accelerometer data needs to be taken across the array in a variety of conditions in order to

make a more precise estimate of the effect of microphonic heating. Regardless of the uncertainties

in cleaning efficiency or heating amplitude, the effects are expected to be small compared to the

statistical uncertainty.

18.4 HEATED UCN DETECTION EFFICIENCY

The results in Section A.3 rely on the estimate of the total number of high-energy UCN in the

trap using the number of UCN counted above the cleaning height. The Monte Carlo simulations

can determine whether or not this correction works. The effectiveness of this correction is tested

by comparing the sum of counted uncleaned or heated UCN between the simulations and data.

The statistical uncertainty of the 2016-2017 dataset was 0.7 s and the statistical uncertainty of the

simulated 80x heating was 0.6 s. An additional no heating simulation was done with a precision

of 0.4 s. The arrival time of uncleaned UCN can be seen in Figure 18.2a and the arrival time of

heated UCN can be seen in Figure 18.2b.

118



0 20 40 60 80 100 120 140
Time [s]

100

101

102

103

104

105

Co
un

ts

f38 = 2.3%

f43 = 0.003%

P1 Efficiency (Short Run Uncleaned UCN)
All UCN
E>38 cm
E>43 cm

(a) Arrival time of UCN on the detector split by energy group for

uncleaned UCN.

0 20 40 60 80 100 120 140
Time [s]

10 1

100

101

102

103

104

105

Co
un

ts

fP1=0.01%
f38=8.0%

f43 Counted=0.10%
E > 43 cm Lost=1.4%

P1 Efficiency (Long Run Heated UCN)
All UCN
E>38 cm
E>43 cm

(b) Arrival time of UCN on the detector split by energy group for

heated UCN. 1.4% of UCN are lost due to heating.

Figure 18.2: Efficiency of counting UCN in Peak 1. f38, f43, and fP1 are the number of UCN

counted with E > 38 cm, E > 43 cm, and in Peak 1 normalized to the total population (gray).
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The arrival time of UCN is split between E > 43 cm (orange), E > 38 cm (red), and all UCN

(gray). For uncleaned UCN, no neutrons are counted at the cleaning height. Almost all E > 43 cm

UCN are lost during storage, leading to the 0.03 s shift. UCN with E > 43 cm are also missing

from the 2nd step. These UCN are likely high-θ0 UCN which are associated with periodic orbits

that have long cleaning times. These orbits are also more likely to be counted during the last step

than during steps 1 or 2.

For the 80x heating scenario, the sum of UCN counted in the first step is 96. This is consistent

within uncertainty with the number measured in Section A.3. However, the shift in lifetime for this

scenario is 7.68 s, significantly larger than the estimate from the 2016-2017 data. The simulation

gives a scenario where the observed number of counts in peak 1 is small, but the shift in lifetime

is large. These simulations suggest that measuring the population of UCN at the cleaning height

does not give enough information about the number of high-energy UCN in the trap.

Regular orbits which skim on the bottom of the trap and do not deviate far in ζ may cause part

of the difficulty in detecting high-energy UCN. These orbits are approximately half the orbits in

the trap at high energies, causing at least half of the trajectories to not be counted. Additionally,

spectral broadening as seen in Figure 18.3a can also help explain difficulties in measurement. Half

of the heated UCN are within 1.5 cm of the lowered cleaner height after significant heating. This

is approximately the width damaged portion of the detector, which will count significantly fewer

neutrons than the higher portions.

The reduced counting efficiency as a function of energy can also be seen by splitting the arrival

time by energy band. A simulation of the data in Section 12.6 was performed. The counting period

was then split up into different energy bands seen in Figure 18.3b

The lowest energy group (E <39 cm) contributes only a few counts; The next highest group

(E <40 cm) contributes < 5% of the counts. If the detection efficiency is the same across energy

bands, then these two populations should contribute ∼40% of the counts. Because the density

of heated UCN linearly drops with height, the efficiency of counting them will be significantly
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Figure 18.3: Effects of heating on the UCN spectrum and spectrum on counting efficiency.

reduced.

This result indicates that the assumptions in Section A.3 are incorrect. The high-energy popu-

lation cannot be measured at the cleaning height to determine the heated or uncleaned population.

The results using this detection method are therefore discarded in the lifetime result. However,

the size of the shift in τ due to heating is still expected to be small for nominal vibrations in the

trap.

18.5 ARRIVAL LOCATION OF UCN ON CLEANER AND DAGGER

The arrival location of UCN on the cleaner and detectors was also studied. The arrival position

on the cleaner shows a large amount of structure. The arrival location of UCN with low θ0 is

significantly different than that of UCN with high θ0. High θ0 was defined as θ0 > 0.9 and low

as θ0 < 0.6. The arrival location of late-time UCN is also significantly different than the arrival

location of short-time UCN. The simulation results can be seen in Figure 18.4.

The high θ0 and low θ0 are qualitatively different. There is significant structure in high θ0,

possibly due to the prevalence of periodic orbits in that part of phase space. The hot spots from
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low θ0 are not understood. These orbits may take longer to be absorbed if the cleaner edge was

significantly far from y = 0. However, these orbits are typically associated with chaotic orbits as

seen in Section 20.2 so they may be cleaned quickly regardless.

The late arrival UCN are also different from early UCN. The late UCN show more structure,

indicating a higher presence of periodic orbits. Additionally, the hot spots on the cleaner are not

present at long times, indicating that they are associated with quickly cleaned UCN.

The arrival profile on the dagger detector for the 3-dip data can be seen in Figure 18.5. The

x, z coordinates are a sum of the 2 dips and the dips are separated in the secondary histogram.

The arrival ζ ′ for the 2nd dip is peaked at 1.6 cm, corresponding with the detector damage ζcut

value. Here UCN preferentially absorb as close to the edge as possible, but are mitigated by

the damage. During the last dip, the peak ζ ′ is around 2.5 cm which is the height of the trap’s

minimum potential on the dagger. Below this ζ ′, UCN lose energy to the magnetic field and so are

most likely to be absorbed at the minimum potential point.
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Figure 18.4: Arrival location of UCN on the large cleaner
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CHAPTER 19

SIMULATION OF PHASE SPACE EVOLUTION

19.1 PHASE SPACE EVOLUTION DATA

Several phase space evolution (PSE) runs were taken during the 2016-2017 run cycle. One set of

dedicated PSE runs were studied. Additionally, a set of counting time constant runs were studied.

If the trap simulation captures the physics of the experiment, the phase space evolution should be

recovered. The run configuration can be seen in Figure 19.1.

The PSE runs inserted the dagger 13 cm below the cleaner during the cleaning process. This

eliminates a large number of trappable UCN. Only a subset of UCN in the trap are eliminated;

some UCN are in orbits that do not intersect the dagger when it is 13 cm below the cleaner. This

creates a hole in phase space. When the dagger is re-inserted during the counting period, the

population in the 2nd peak is diminished due to the cleaning. However, during the storage period
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Figure 19.1: Run configuration for phase space evolution Data
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Figure 19.2: Phase space evolution data/Monte Carlo simulation comparison

UCN can evolve into orbits which do intersect the dagger and the population in the 2nd peak will

increase as a function of storage time. This can be seen in Figure 19.2.

The fraction of UCN in peak 2 increases by almost double as storage time is increased. However,

the simulation does not capture the relative population sizes seen in the data. The growth over

time is also significantly smaller. Heating was also added into the simulation to see if heating UCN

to higher orbits will introduce the needed growth over time. Heating adds in a significant amount

of growth, but the relative population sizes are still low. The mismatch in the population sizes

and growth over time suggest that there is some mechanism that mixes orbits in the physical trap

that is not present in the simulation.

19.2 PHASE SPACE EVOLUTION IN LIFETIME DATA

Phase space evolution can also be tested for in production lifetime data. One way to test PSE in

lifetime data is to separate the lifetime measurement by dip. By calculating τn from the 2nd dip

and 3rd dip, differences in the fraction of UCN counted at each height cause shifts in the lifetime.
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The lifetime separated by dip can be seen in Figure 19.3.

The simulation has a significantly different lifetime in the 2nd dip than the data. In the

simulation, the lifetime is significantly shorter, indicating a higher efficiency for counting at short

times compared to long times. Heating tends to redistribute UCN to higher peaks, and this masks

the PSE signal. At a level of 40x heating, the lifetimes are almost the same between the 2nd

and 3rd peaks. This is additional evidence that the phase space evolution or initial phase space

distribution is not accurate in the simulation.

19.3 COUNTING TIME CONSTANT

Another manifestation of phase space evolution and the initial distribution of UCN in Phase space

is the counting time constants. Several dedicated time constant measurements were made during

the 2016-2017 run cycle. The basic configuration was a 9-dip measurement where the counting

was paused at one height to measure the time constant for several hundred seconds. The timing

diagram is given in Figure 19.4
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Figure 19.4: Run configuration for Time Constant Data

The time constants were measured in Section 12.3 to be between 40 s at the longest to 7 s at the

shortest. Comparison of the time constant at each height in the trap can be found in Figure 19.5.

The simulations shows two significant differences from the data: 1) a missing long-time component

and 2) an excess of counts during the last step. The first could be evidence for missing phase space

evolution in the data and the latter could be an indication of an excess of UCN at high θ0. The

UCN counted during the last step are associated with high θ0. When these UCN are filtered out,

the last step in the simulation disappears, which is consistent with the data. This can be seen in

Figure 19.6.

A process which takes high-θ0 orbits and mixes them into the normal trap population during

the storage period could also cause this effect. Irregularities in the actual trap potential may drive

these transitions and cause the other phase space evolution effects needed to make the simulation

match the 2016 dataset.
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CHAPTER 20

LYAPUNOV EXPONENTS

20.1 LYAPUNOV EXPONENTS

In strongly chaotic systems, trajectories are ergodic and have the property that they fill phase space

(they come arbitrarily close to any point in phase space) and nearby trajectories exponentially

diverge. In the context of UCNτ , arrival on the cleaner can be considered a point in phase space.

Chaotic trajectories are then guaranteed to eventually interact with the cleaner and be lost. A

trajectory on a periodic orbit may never visit the cleaner and therefore not be cleaned.

In mixed dynamics systems, chaotic trajectories can exist close to (but outside of) regular tori

and the rate of escape can be limited [59]. These trajectories will still fill phase space however. In

the context of UCNτ these trajectories can exist close to the regular tori in phase space during the

cleaning time but then reach the cleaner during storage.

It is therefore possible to gain insight into the cleaning process by studying the chaotic behavior

of the system. If the fraction of chaotic UCN trajectories in the trap is sufficiently high, then every

trajectory is guaranteed to be cleaned. If the fraction of semi-periodic (regular) orbits is high, then

some trajectories may become problematic during storage.

Some superconducting lifetime traps contain radially symmetric potentials [60], which poten-

tially can have long-lived regular orbits. High-energy UCN with sufficient energy in angular momen-

tum about the axis of symmetry could be trapped for long periods of time. The UCNτ apparatus

was given asymmetry in an attempt to mediate this effect.
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Lyapunov characteristic exponents (LCE) were used to study the chaotic nature of trajectories.

LCE can be measured in numerical simulations by tracking perturbed trajectories and measuring

their divergence [61]. The procedure to measure the LCE is to start with an initial trajectory,

perturb it by a small distance ε in phase space, track both trajectories independently for a time

∆t, then measure the distance between them δ. The quantity associated with the LCE is given by

k =
1

N∆t

N∑
i=1

ln

(
|~δi|
ε

)
, (20.1)

where N trials are done.

After each trial, the partner trajectory is reset to a distance ε from the reference trajectory. δ

was measured by scaling the distance of each coordinate by the region of allowed phase space (for

example, δy was scaled by 35 cm, roughly scale of phase space available in y). This normalization

allows the momentum and distance coordinates to contribute equally. As N∆t approaches ∞ and

ε approaches 0, k approaches the LCE. Values of k near zero are considered regular and values of

k > 0 are considered chaotic.

Initial partner trajectories were defined by adding a small amount of momentum in the direction

perpendicular to the initial momentum and subtracting a small amount of momentum parallel so

that both energy is conserved and the distance is ε. After the initial separation is tracked for ∆t,

the partner trajectory is reset by shrinking the separation along ~δ so that it is separation is ε.

UCN were tracked with an initial separation of ε = 1×10−9, ∆t=5 s, and N=100. Qualitatively,

the distribution of k did not change with increasing ∆t, N , or ε, indicating stable characterization

of trajectories. The value of k was unstable for a given trajectory as noted in Section 16.3, but

trial trajectories did not change from regular to chaotic or vice-versa.

20.2 LYAPUNOV RESULTS

The LCE of 2 million trajectories was calculated. The UCN were created in the trapdoor box with

a flat energy distribution and isotropic θ0 distribution. Data was later weighted to match the input
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Figure 20.1: 2D histogram of LCE and energy inside the trap

spectrum found from the χ2 minimization. Trajectories with E > Eclean were later re-simulated

on a personal computer to measure the cleaning time. The overall distribution of LCE in the trap

can be seen in Figure 20.1.

Three important features of the distribution are that 1) chaotic behavior begins at an energy of

approximately 25 neV, 2) about half of the trajectories in the trap at cleaning energies are chaotic,

and 3) there is a region of mixed dynamics where chaotic trajectories are close to regular ones.

The rise in k as a function of energy can be explained by high-energy trajectories having more

phase space available. The separations δ can be larger and therefore the normalization is not exact.

Regular trajectories can be cleaned quickly if their orbits intersect the cleaner. For orbits which

do not, their cleaning time can possibly be very long. The cleaning time can be seen in Figure

20.2.

The important feature to note is that regular trajectories are associated with a long time

constant. Trajectories that remain uncleaned in the trap are significantly more periodic than the
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Figure 20.2: 2D Histogram of Cleaning Time and LCE in the trap

initial distribution. Regardless of this effect, high-energy UCN which could reach the cleaner during

storage are still cleaned efficiently.

Regular trajectories are also associated with low θ0 initial conditions as can be seen in Figure

20.3. This explains the prevalence of structure in the cleaner arrival positions found in Section

18.5.
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Figure 20.3: 2D Histogram of LCE and θ0 inside the trap for E > 38 cm
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CHAPTER 21

SUPERCONDUCTING UCN TRAPS

21.1 SUPERCONDUCTING TRAP GEOMETRY

LCE can be used to study new superconducting traps. Simple geometries will be used to deter-

mine whether a superconducting trap can be made where the cleanable orbits are overwhelmingly

chaotic. The basic building blocks of these traps will be superconducting loops which can be solved

analytically. The field of a superconducting ring in cylindrical coordinates is given by [62]

Bz =
c

2α2β
((a2 − r2 − z2)E(k) + α2K(k))

Br =
cz

2α2βr
((a2 − r2 − z2)E(k)− α2K(k)),

(21.1)

where c is the current strength, a is the loop radius, α2 = (a− r)2 + z2, β =
√
a2 + r2 + z2 + 2ar,

k = 1 − α2/β2, E(k) is the complete elliptic integral of the 2nd kind and K(k) is the complete

elliptic integral of the 1st kind. The derivatives are given in the technical report from Simpson

et. al. [62] and are not reproduced here. The elliptic integrals are computed using the arithmetic

geometric mean method [63].

The basic structure of the traps studied are large tori where superconducting rings share the

toroidal axis of rotation. The minor radius r was allowed to change by varying the number of

coils but keeping their spacing approximately 15 cm apart. The major radius R was fixed at 1 m.

Additionally, a toroidal holding field was added with strength 2 kG at the center of the torus. UCN

are filled up 3
4 of the height of the trap. The field strength was varied until escape at the bottom
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Figure 21.1: Drawing of superconducting trap with UCN trajectory. 22 coils; r = 0.525 m

of the trap was not possible for UCN of energy 3
4 trap height. This corresponds to a trapping

strength of approximately 150 neV. The geometry can be seen in Figure 21.1.

No feasibility studies were done on the trap geometries. The current strengths/densities in the

superconductors, the holding field, and the experimental apparatus were never considered. The

aim of this study is to demonstrate that a trap of this type is possible, not that a given realizable

trap design will perform well.

The same symplectic integrator used in Section 16.1 was used to integrate the UCN trajectories

inside the trap. Qualitatively, the behavior was similar, however the trajectories were not subject

to the long-term drift seen in the UCNτ field expansion.

Trajectories were created at a single energy at the cleaning height. The phase space distribution

was filled uniformly by rejection sampling on the available phase space in the momentum shell for

each trajectory. This was accomplished by rejecting on p2/(p2
max).
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21.2 SUPERCONDUCTING TRAP RESULTS

A scan over the trap parameters Nwires, r, R was conducted to identify which traps had the fewest

periodic orbits. The results of a fine scan over a wide range of minor radii at R=1 m can be seen

in Figure 21.2.

The regular fraction tends to be lower at higher r. At above r = 62.07 cm, the fraction is 0 (out

of 10240 trajectories). The near-chaotic region was explored with varying R as well. The ratio of

minor to major radius (r/R) is the important size parameter. The results can be seen in Figure

21.3. The chaotic nature of the trap is most important in r/R and less important in Nwires.

The cleaning time can also be measured. This is a quicker computation; only tens of seconds of

tracking is needed per UCN instead of the hundreds for the LCE measurement. The cleaner was

set at 90% of the trappable energy and was assumed to cover the entire trap surface. A neutron

is considered cleaned when it rose above the cleaning height; the cleaning time for each UCN was

recorded. For a highly chaotic configuration (r = 81.17 cm), the cleaning time can be found in
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Figure 21.4. The cleaning time is significantly more exponential than UCNτ , which is an indication

of its highly chaotic nature and the monochromatic UCN spectrum. Approximately 300000 UCN

were simulated, so a few parts in 105 is achieved at roughly 250 s.

One way to fill the trap is to fill an outer containing volume with UCN and then ramp the trap

coils. This process can be studied using a time-dependent Hamiltonian where the field strength is

gradually increased. The current in the main trapping coils was increased linearly from 0 at t = 0

to full strength at t=60 s. The UCN were then allowed to settle for 30 s. The outside material

container was a box with sides 3×3×0.5 m centered at the origin. UCN were filled in phase space

uniformly. The trap was a torus with R = 1 m, r = 0.15 m, and Nwires=8. UCN were allowed to

scatter diffusely on the sides of the containing box. The distance from the centerline of the torus

is given by

ρ′ =

√
(1−

√
x2 + y2)2 + z2, (21.2)
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Figure 21.4: Cleaning time of r = 81.17 cm trap.

where ρ′ < r indicates a point inside of the torus.

The distribution of ρ′ can be seen in Figure 21.5. The trap walls are evident at 15 cm. Some

high-energy UCN are still near the walls of the trap, but most UCN are either inside or outside of

the volume. For the UCN inside the trap, the energy gain during ramping was between 10-25 neV

with an average of 17 neV. The trapping potential was approximately 150 neV; UCN did not gain

so much energy that they were driven out of trapping energy. However, any cleaning procedure

needs to account for this heating of UCN during ramping.

After ramping, 5% of UCN were inside the torus. The torus is approximately 10% of the volume

of the containing box, so no large losses occurred during trapping. The fiducial volume of the torus

is smaller due to the large field near the coils, so 5% is consistent with high-efficiency trapping

during ramping.

A simple toroidal trap with overwhelmingly chaotic behavior is possible. In these simulations,

traps which have a large minor radius tend to perform better. Additionally, the cleaning behavior
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Figure 21.5: Ramping study of a superconducting UCN trap. Ramping occurred over 30 s

is seen to be exponential as expected from ergodic trajectories, and roughly comparable to the

cleaning performance of UCNτ . There is not a fundamental problem with superconducting traps

with respect to cleaning UCN trajectories in a lifetime experiment.

141



CHAPTER 22

CONCLUSION

22.1 SUMMARY OF METHODS AND RESULTS

The neutron Lifetime has implications from cosmology to beyond the Standard Model physics.

The recent history of τn measurements is in tension. UCNτ is a neutron lifetime experiment using

trapped ultracold neutrons; it is subject to different systematics than other lifetime experiments

and serves as an important check on the field. UCNτ can make a measurement with no corrections

(other than background) larger than the statistical uncertainty. It does this by using a large-area

spectral cleaner which rapidly eliminates overthreshold UCN, trapping neutrons with a magnetic

field which avoids upscattering losses, and measuring UCN with a in situ detector which allows

for prompt detection and spectral monitoring.

A dataset with a statistical uncertainty of 0.7 s was taken in 2016-2017. This data was analyzed

to extract τn by summing the neutron population at 2 separate holding times and forming τn for

each pair of long and short runs. Two separate analysis schemes were presented - one which relies

on identifying distinct UCN events (which suffers from large pileup and deadtime corrections) and

one which integrates the total light level of the scintillating detector (which suffers from large

background corrections). The properties of the UCN identification algorithm were studied and a

set of optimal cuts identified. The two analyses agreed within their uncertainty.

Data-driven estimates of systematic effects were made. Limits were placed on shifts due to

depolarization during holding, position-dependent backgrounds, phase space evolution, and dead-
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time. The size of these effects was estimated to be small (< 0.2 s).

A simulation of the UCNτ experiment was constructed. A spectral and detector model was

constructed using 5 free parameters and tuned on a large dataset. This model was used to estimate

the effects of heating and cleaning. Heating was added by inserting vibrational profiles measured

on the apparatus. The simulations estimate the combined effect of uncleaned and heated UCN is

∼0.03 s. Adjusting the vibration amplitude to 4000% of observations caused the combined effect

to be ∼0.15 s. However, simulations of measuring the high-energy population of UCN in the trap

show that UCNτ may not be able to directly detect uncleaned or heated UCN with sufficient

precision.

Lyapunov exponents were used to characterize UCN traps. UCN traps made of superconducting

loops arranged in a torus were studied for their feasibility as a neutron lifetime experiment. Trap

geometry was optimized so that chaotic orbits were almost all of the orbits present. Chaotic orbits

guarantee cleaning because their trajectories are ergodic. The cleaning time in such a trap was

studied and shown to be acceptably fast. Additionally, the method of filling an exterior volume

with UCN and ramping the superconducting coils in the trap was studied. The fraction of UCN in

the trapped volume after ramping was approximately the fraction of the volume of the trap to the

volume of the container. UCN were heated by approximately 17 neV during the ramping which

should not be catastrophic to loading the trap.

UCNτ has made a measurement of 877.9 s±0.68 s(stat.)±0.3 s(sys.). No systematic effects

larger than the statistical uncertainty were identified and especially none which can explain the

beam-bottle discrepancy. Simulations show that UCNτ (or another magneto-gravitational experi-

ment like it) can reach a precision of 0.1 s or better in the future.

143



1990 1995 2000 2005 2010 2015 2020
Year

860

865

870

875

880

885

890

895

900

905nτ

 MeasurementsnτPDG Avg. and 

PDG Avg.
Beam
Bottle

τUCN

Figure 22.1: Lifetime Measurements through the ages.

22.2 IMPLICATIONS OF UCNτ RESULTS FOR PRECISION β DECAYMEA-

SUREMENTS

The measurement from UCNτ confirms the previous bottle measurements, while making no cor-

rections (other than backgrounds) larger than the statistical uncertainty. The previous bottle

measurements can be seen in Figure 22.1; UCNτ is the last measurement shown.

UCNτ is a novel lifetime experiment because of its small corrections. The use of magnetic fields

to trap UCN eliminates the largest correction of previous experiments. To reiterate the estimated

upper limit of the corrections, pairing runs causes the spectral variation from the source to only

affect the lifetime by 0.2 s. The magnetic field configuration provides an environment largely free

from depolzarization, giving an upper limit of 0.17 ± 0.15 s. The use of in situ detectors allows

for the checking of phase space evolution to be performed, which is seen to be < 0.1 s (under the

assumption of uniform detector efficiency). Simulations of the cleaning estimate an upper limit

of 0.05 s when accounting for an only 50% efficient cleaner. Nominal simulations of microphonic

vibrations show no significant effect; shifts of > 0.1 s occur only when the amplitude is increased to
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40 times the in situ measured amplitudes. With these estimates, the trap operates in a relatively

safe space with room for error.

Shifts large enough to explain the discrepancy between beam and bottle measurements are

significantly larger than the upper limits estimated in this work. The discrepancy lies at 10 s

currently, and bringing the UCNτ results within 3σ of the beam result would require a shift of 4 s.

The only systematic capable of producing shifts that large is heating at an amplitude of > 40 µm.

Confirmation of the bottle lifetime measurement is not yet significant in comparison of BBN

helium abundances to observational values. The central value of the beam lifetime shifts the

predicted Yp at the +1σ bound of the currently most precise observations [16]. However, future

more precise observations could shed light on this discrepancy.

Modern precision measurements of nuclear β decay and neutron decay can discriminate between

the beam and bottle measurements however. The lower bottle lifetime and modern precision β

decay measurements form a consistent picture in terms of Vud and λ [64]. Figure 22.2 shows the

current state of the precision β decay measurement field. The λ result from Brown et. al. and the

τn measurements from Pattie et. al. were blinded, reducing the possibility of biasing the results

towards artificial consistency. If the modern λ measurements are accepted at face value, beam τn

measurements are an outlier at ∼ 3σ.

Overall there remains significant unexplained tension in the neutron β decay field. However,

using modern blinded neutron β decay measurements yields a consistent picture of the standard

model.
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APPENDIX A

UNCLEANED AND HEATED UCN EXTRAPOLATION

A.1 UNCLEANED UCN CORRECTION

The in situ UCN detector allows measurement of UCN population at different spectral heights. By

inserting the detector only partially to a height h, only UCN with an energy of E(h) ' h × 1neV
cm

can reach the detector and be counted. This allows for a measurement of UCN at energies above

the cleaning height from either insufficient cleaning or heating

When there is insufficient cleaning, UCN can escape the trap on similar timescales to τn. This

is a competing loss mechanism that lowers the measured lifetime. If the UCN signal from above

the cleaning height can be subtracted, then uncleaned UCN can be corrected for.

Figure A.1 shows the correction schematically. The time constant, κcount was measured from

dedicated runs in a single cleaning condition where the detector was left in place at the cleaning

height for hundreds of seconds. This signal is called the ”first peak” or P1. The runs were fit to

a single exponential (there is both short and long time behavior, but insufficient statistics to do

a detailed fit). κcount was measured to be 180 ± 50 s. No other cleaning condition was measured

this way, so the time constant is assumed to not change significantly and to be the same between

long and short runs.

If UCN are present in the first peak where they could have been lost, the total number of

UCN predicted needs to be subtracted in order to measure the neutron lifetime. The rate seen in

the detector (κ−1
obs = Robs) is a combination of the counting rate (κ−1

count) and the neutron lifetime
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Figure A.1: Diagram of uncleaned UCN correction. The red curve is what the counting curve

would look like if the detector had been left at the cleaning height until all UCN were counted.

The area under the red curve (minus the background) needs to be subtracted from the sum in the

subsequent peaks to make the correction.

(τ−1
n = Rβ). The number of UCN counted in any given interval should then be

Nobs =
Rdrain

Rdrain +Rβ
×Ntotal

Rdrain = Robs −Rβ

Ntotal = Nobs ×
Robs

Robs −Rβ
(A.1)

The fraction of UCN at the cleaning height (P1) over the fraction at subsequent heights (P2, P3,

and P4) is measured for each cleaning condition and for short and long runs separately. UCN are

lost at high energies so f depends on holding time. The P1 counting curve needs to be extrapolated

out to infinity, corrected for β decay and subtracted. Given a number of counts observed in the

first T1 s of the P1 counting curve, the expected number of UCN in the remaining part of the tail
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Run Set fs fl

300s Clean 4 Dip NoGC AC DC 0.00272± 0.00009 0.0014± 0.0002

100s Clean 4 Dip GC AC NoDC 0.00212± 0.00008 0.0011± 0.0002

200s Clean 4 Dip GC AC NoDC 0.00173± 0.00008 0.0012± 0.0002

Table A.1: Measured uncleaned UCN fraction for cleaning conditions where the uncleaned UCN

correction is needed. Note that the fraction above the cleaning height is lower for long runs.

is given by:

Nuncleaned =

∫ ∞
T1

N0exp(−t/κ)dt = κN0exp(−T1/κ)

NP1 = f ×NP2,P3,P4 =

∫ T1

0

N0exp(−t/κ)dt = κN0(1− exp(−T1/κ))

Nuncleaned = f ×NP2,P3,P4
exp(−T1/κ)

1− exp(−T1/κ)

Nuncleaned,total = Nuncleaned ×
1/κ

1/κ− 1/τn
(A.2)

During analysis of the 2015-2016 data that had insufficient cleaning, Nuncleaned is subtracted

from the sum of P2-P4 and the corrected sum is used for the lifetime calculation. This is expected

to correct for uncleaned UCN but due to uncertainty in time constant, this data was not used to

report a central value. Data with the cleaning correction was used purely as a cross-check.

A.2 UNCLEANED UCN UNCERTAINTY ESTIMATE

The data taken in 2016-2017 had a significantly larger cleaner which was very effective at removing

high-energy UCN. The population at the cleaning height was observed to be consistent with zero

as seen in Figure A.2. All multi-step runs in 2016-2017 had a cleaning check step where the UCN

population was measured at the cleaning height.

The background was subtracted by adjusting background rates observed during the holding time

for height-dependence. The position dependence was determined using a set of 9-step background
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Figure A.2: Arrival time histogram for short storage time runs. The first 20s is the detector at

380 mm, at the cleaning height.

runs. The background at 9 different heights in the trap was measured and this was fit to a linear

function. Insufficient high-quality background runs caused the position-dependent effect to be

measured only once for the 2016-2017 data set.

For 2016-2017, the number of counts was observed to be consistent with 56±57 counts out of

239 runs with cleaning check steps.

A Monte Carlo technique is used to estimate the systematic uncertainty associated with these

counts [65]. First the total number of foreground counts is modeled as a Poisson distributed

number with expected value equal to the observed sum. The total background observed for both

the production and position-dependent parts are modeled the same way. Independent foreground

and background counts are randomly generated. Then the background is subtracted from the

signal to generate a sample of uncleaned UCN.

The same correction used in 2015-2016 was used with each sampled uncleaned UCN density. For

each sample, a total population is extrapolated and the same total population is used in a separate
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analysis to generate a lifetime. The uncleaned fraction is subtracted from the short run and that

population is assumed to disappear during storage, corresponding to the worst case scenario. The

uncertainty is then the endpoints of the 68% coverage interval of the resulting τ distribution.

The effect associated with uncleaned UCN was found to be +0.07± 0.07 s.

A.3 HEATED UCN UNCERTAINTY ESTIMATE

A similar calculation can be made by observing counts at cleaning height for long storage runs.

Heating from vibration of the trap is expected to produce a continuous increase in the UCN spec-

trum [66]. Further simulations in a 3D trap model also showed similar results. These simulations

are detailed in Section 18.4. A lack of UCN measured at the cleaning height is evidence for lack

of significant vibrational heating of UCN during storage.

For 2016-2017, the number of counts was observed to be consistent with 51±57 counts out of

239 runs with cleaning check steps. Figure A.3 shows the distribution of heated UCN assumed for

propagating the uncertainty.

Each sample of total heated UCN population is corrected using the 2015-2016 method. However,

in this case the total number of expected UCN in the first peak is added to the signal in the long

runs. This corresponds to the worst case scenario where initially the heated population is trappable

but the heated population is entirely lost during storage.

The effect associated with vibrationally heated UCN was found to be +0.27±0.3 s. Figure A.4

shows the resultant distribution in τ when the distribution from Figure A.3 is used.
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